CMPSCI 601: Recall From Last Time L ecture 18

Savitch’s Theorem: For s(n) > logn,
NSPACE[s(n)] C DSPACE[(s(n))’]

Immerman-Szelepcsényi Theorem: For s(n) >
logn,

NSPACE[s(n)] = c0o-NSPACE|s(n)]
Closure Theorem: Virtually all the classes we’ve con-
sidered are closed downward under logspace reductions.

Exercise (HW#6): Logspace reductions are transitive,
le,iIfA<Band B<(CthenA<C.

CMPSCI 601: Finite Model Theory Lecture 18

Consider the input (the object we are working on) to be
a finite logical structure, e.g., a binary string, a graph, a
relational database, or whatever. Remember that a struc-
ture includes a list of the objects and lookup tables for all
the variables, constants, relations and functions.

Definition 18.1 FO is the set of first-order definable deci-
sion problems on finite structures. Let S C STRUCs;4(X].

S € FO Iff
S ={A € STRUCspX] | AF ¢}, someyp e L(X)

Addition Q@+ : STRUC[X 4] — STRUC[L,]

A a1 Qs ... Qp_1 QA
B + by by ... b,_1 b,
S S1 89 ... Sp_1 Sp

C(i) = (F5 > 9)(AG) AB(F) A
(Vk.j >k > i) (A(k) vV B(k)))

Q+(i) = A(i) ® B(i) ® C(i)

Q+(c) € FO

Encode structures A € STRUCy;, (%] as binary strings,
bin(A).

Example:

e binary strings: bin(A4,,) = w
e graphs: G = ({1,...,n}, E,s,t)

bln(G) — a11a12 o o e a;nn8182 e e Slogntl .« e e tlogn

Theorem 18.2 FO C L = DSPACE|logn]

Proof:
Given: ¢ = (Jz1)(Vaa) - - - (Vaor)y)

Build DSPACE[log n] TM M s.t,,

AEo & M(bin(A)) =1

By induction on k.

Base case: £ = 0.
o = E(s,t)

p=8<t

Inductive step:

gp’ = (E|$3) (V$4) s (vak)zp
By inductive assumption, there is logspace TM M,
AE ¢ & M'(bin(A)) =1

Modify M’ by adding 2[log n| worktape cells.

Worktape of M: 1 Zo Worktape of M’

floé n| [logn]

M cycles through all values of 2, until it finds one such
that for all =5, M’ accepts. l

A Java program can easily be written to test whether A =
@. It has nested f or loops, one for each quantifier. Since
It uses only a constant number of variables of logn bits
each, It represents a deterministic logspace algorithm.

CMPSCI 601 Second-Order Logic Lecture 18

Second-order logic consists of first-order logic, plus new
relation variables over which we may quantify.

(VA")¢
For all choices of the r-ary relation A, ¢ holds.

SO is the set of second-order expressible boolean queries.
SO4d s the set of second-order existential boolean queries.

N e S S

SAT is the set of boolean formulas in conjunctive normal
form (CNF) that admit a satisfying assignment.

d,, = (ASH(Vt)(3z)(C(t) —
(P(t,x) NS(z)) V (N(t,z) A —S(x)))

C(t) = “tisa clause; otherwise ¢ is a variable.”
P(t,z) = “Variable x occurs positively in clause ¢.”
N(t,x) = *“Variable z occurs negatively in clause ¢.”

© = (5171\/33—2\/5133)/\(1171\/5172\/27—3)/\(3}'—1\/172\/27—3)

-
-
L.
-
-

CLIQUE is the set of pairs (G, k) such that G is a graph
that has a complete subgraph of size k.

Let Inj(f) mean that f is an injective function

Inj(f) = (Vay)(fl(z) = fly) = z=y)

Doe = Af1INJ(F))(Vay)((x £y A fl@) <k A fy) <k)
— E(z,y))

10

Theorem 18.3 (Fagin’s Theorem) NP is equal to the set
of existential, second-order boolean queries, NP = SO4.

Proof: NP O SOd:. We are given a second-order exis-
tential sentence

® = (3IRY)... AR}y € L(D)

Build NP machine N s.t. for all A € STRUCp, 2],
AE® < N(bin(4) =1 (18.4)
A € STRUCs4 2], n = |A|.

N nondeterministically writes down a binary string of
length n"t representing R, and similarly for R, through
Ry.

A = (AR, Ry, ..., Ry)

N accepts iff A" = 1.

Since FO C L (Th 19.2) we can test if A’ = 4 in
logspace and so certainly in NP. Thus Equivalence 18.4
holds.

11

NP C SO4: Let N be an NTII\/IE[nk] TM.
Write an SO4 sentence,

® = (3CE...C2%H ANy (18.5)
meaning, “There exists an accepting computation C, A
of N.”

We will show that:

AE® << N(bin(4) =1

Remark 18.6 Assume that language has numeric rela-
tions: <, SUC and constants 0, max refering to total or-
dering on the universe, its successor relation, the min-
Imum and maximum elements in this ordering, respec-
tively.

Then ¢ Iin Equation 18.5 can be made universal,

o = (Vo -x)y,
with v quantifier free.

12

CMPSCI 601: Encoding N’s Computation Lecture 18

Fix A, n=|A]

Possible contents of a computation cell for V:
F:{’Yo,...,’yg_l}:(Q X E)UZ

Ci(s1,..., Sk t1,...,tx) means cell s at time ¢ is symbol
Yi

A(t) means the ¢ + 1°* step of the computation makes
choice “1”; otherwise it makes choice “0”.

13

Space
0 1 5 n—1mn nF—1] A
Time 0 <Q(), ’UJO> w1 s Wp—1 LI - LI (S()
1wy (g1, wr) Wp—1 U -+ L 01
t a_{agla; 01
t+1 b Ot41
n*—1| (g, 1) U oo U

Accepting computation of N on input wowy - - - wy,_1

14

Write first-order sentence, ¢(C', A), saying that C', A codes
a valid accepting computation of V.

o = aANB AN

row 0 codes input bin(A)

(Vg, t,i 7])(_'(CZ<§>E) N Cj(gaa))
(V¢)(row ¢ + 1 follows from row ¢ via move A(t) of N)

SS9
1]

last row of computation is accept ID
AE® < N(bin(4) =1

¢ = ICFFCT--- O AM(p)

“4 an accepting compution: N(me) = 1”

15

a = row 0 codes input bin(.A)
Assume X has only single unary relation symbol, R.

0 1 n—1n n® —1|
(go,wo) wy o Wy U L

Yo =0; v1=1; v2=L; 73 =(q0,0); V4 = (qo, 1)

Q
]

R(0) — C4(0,0)
A =R(0) — C5(0,0)
A (Vi > 0)(R(z) — C1(0z,0)
A = R(i) — Cy(01,0))
A (V5> n)Cs(5,0)

16

Most interesting case: n

(a_1,a0,a1,6) b
Triple a_1, ag, a; leads to b via move ¢ of N.

m =
(Vt.t < max)(Vs5.0 < § < max)

A (RPA®R) V

(a_l,ao,a1,5>ﬁ>b

=C,_(5—1,8) V =Cyy(5,1) V =C4 (5+1,t) V Cy(5,t+1))
Here =% is — if § = 1 and it is the empty symbol if § = 0.

n = no ANm AN

where ny and ny encode the same information when s = 0
and max respectively. 3

17

Theorem 18.7 (Cook-Levin Theorem)
SAT is NP-complete.

(This theorem was proved roughly simultaneously by Steve
Cook in the USA and Leonid Levin in the USSR, before
Fagin proved his theorem. We’ll prove Cook-Levin as a
corollary of Fagin’s Theorem, somewhat contrary to his-
tory. But note that the proof of Cook-Levin in Sipser, for
example, is almost the same as our proof of Fagin.)

Proof. Let B € NP. By Fagin’s theorem,

B={A]|AkEd

® = (3C3 - O AV) (a)

with v quantifier-free and CNF,

with each 77 a disjunction of literals.

18

Let A be arbitrary, n = | A

Define formula ¢(.4) as follows:

boolean variables:

Ciler, ... ean), Aler, ..., er), i=1,...,9,€e1,...,e9 € |A|

clauses:
Ti(e), j=1,...,recl|Al

T7(e) is Tj(e) with atomic numeric or input predicates,
R(e), replaced by true or false according as they are true
or false in A. Occurrences of C;(¢), and A(e) are consid-
ered boolean variables.

S)
Il

(CE* -+ G A (V) A Ti(3)

A A Te)

e1,...erc Al =1 7

pS
=
[

Ae€B & A= & ©(A) € SATH

19

Proposition 18.8
3-SAT = {p € CNF-SAT | ¢ has < 3 literals per clause}

3-SAT Is NP-complete.

Proof: Show SAT < 3-SAT.

Example:

C = (UiVLV VL)

C'= (U1 VU Vd) A (di VAV dy) A (da V Ly V d3) A
(ds V U5 V ds) A (do V Lg V £r)

Claim: C € SAT & C' € 3-SAT

In general, just do this construction for each clause in-
dependently, introducing separate dummy variables for
each cluase. The AND of all the new 3-variable clauses
Is satisfiable iff the AND of all the old clauses is. [

20

