CMPSCI 601: Recall From Last Time L ecture 12

Vocabulary: ¥ = (®,11, r): function symbols, predi-
cate symbols, arity function, “=" € II.

Defines a type of structure by defining what may be said
about It.

terms, atomic formulas, formulas: L()

The statements that may be made about such a structure
using boolean operators and quantification over vari-
ables.

Structure of vocabulary 3, A = (U, u) € STRUC[Y]

A set of data that defines the meaning of the structure’s
objects, constants, relations, and functions, so that every
statement in £(3) becomes meaningful.




Tarski’s Definition of Truth:

By induction on the definition of formulas, we define what
It means for ““a structure to satisfy a formula’, or equiv-
alently for ““a formula to be true in a structure™.

(JAl, p) Eti =t & plt1) = wu(te)
(Al w) E Rit, .. tory) < (ult), -, wltyr,)) € R}A
(JA] 1) E = < (JA|,p) #
(A, p) EeVie & (JALu) Eeor (A, p) E9
(
(

(|Al, u) E (Vx)p < (foralla € |A|)
Al 1, a/z) = @



Play Tarski’s Truth Game!!!

world: W; sentence: o; players: A, B
A asserts that W | ¢; B denies that W = ¢.
The game rules depend inductively on the formula ¢:

@ isatomic: A wins iff W = o.

e = aVp: Aasserts W = aor Aasserts W = S.

= aAf: BdeniesW = aor Bdenies W = 5.

AN
I

—«a: A and B switch roles, and B asserts W =

2

¢ = dz(y): A chooses an element from |W)|, assign-
Ing it a name n. A asserts that W' | ¢|x < n].

¢ = Vz(y): B chooses an element from |W]|, as-
signing it a name n. B denies that W' = ¢[z < n].
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A asserts: Vxdy(Tet(x) — (Larger(y,z) A RightOf(y,z)))
A asserts: VzIy(—Tet(z) V (Larger(y,z) A RightOf(y, z)))

B chooses: z := ny
A asserts: Jy(—Tet(ny) V (Larger(y,ni) A RightOf(y,n4)))

A chooses: vy := ns
A asserts: —Tet(n;) V (Larger(ng,n;) A RightOf(ny,ny))

A asserts: (Larger(nz,n1) A RightOf(ng, ny))
B chooses: (either)

A wins



Theorem 12.1 For any vocabulary ¥, W € STRUC[Y],
p € L(X),

In the game where A asserts and B denies that W = ¢,

W E ¢ < A has awinning strategy

W £ ¢ < B has awinning strategy

Proof: Think about this! You may be asked to check the
details on a future homework. [

The Tarski Truth game is probably the best way to think
about the meaning of first-order formulas. In particular,
note that the order of quantifiers corresponds to the order
that choices are made in the game.



Example: Structure is a Binary String

Yig = (®7{<7S}7{<<72>7<57 1>})
— (5 <2781)

w = 01101
A, = {{0,1,..., 4}, <,{1,2,4}) € STRUC[X:]
a = (Jz)(Vy)ly <z A S(z))

B = (Vay)((z <y A-S() A=S(y) — (F2)(z <z <y))

Avw F a NP



CMPSCI 601: A Relational Database L ecture 12

Z]gen — (;F17P2752)
By = <U(), Fy, Py, S()> S STRUC[den]

Uy = {Abraham, Isaac, Rebekah, Sarah, ...}
Fy, = {Sarah, Rebekah, ...}
Py = {(Abraham,lsaac), (Sarah,Isaac), ...}

So = {(Abraham,Sarah), (Isaac,Rebekah), ...}

Psiling(T,y) = Ifm(x Zy AN f#m A
P(f,z) AN P(f,y) A P(m,z) A P(m,y))

Spaunt(xay) = HpS(F(CC) A P(p7y> A stibling(pa S)
AN(s=x V S(z,s)))



Example: Models of Number Theory
N — (N7070-7—|_7><7T7<)

N 1s the “standard model of the natural numbers”. But we
can define other models where the statements of number

theory are meaningful!

Let p be a prime number.

Z/pz — ({07177p_ 1}707+1p7 +p7 XpaT]% 0)
N, Z/pZ € STRUC[Z,]
Multinverses = (Vu)(u =0V (Jv)(u x v =1))

Z/pZ = Multinverses

N E —Multinverses
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The Tarski Game in Z/3Z
Aasserts: Z/3Z EVu(u=0V (Fv)(u x v =1))

B chooses: « from {0, 1,2}

Aasserts: Z/3ZE=( =0V (Iv)(| |xv=1))

A chooses:

A wins by choosing “u = 07 if this is true, or by making
v the real inverse of B’s number « otherwise.



Tarski Truth Works for “AND”
Proposition 12.2

(AL Eerny < (A ) EFeand(|Af,p) =9
Proof:
(I 1) F ey

< (AL p) E(me V)

& not (JA|,p) F —e V¢

< not [(([A], ) = —p) or ((|A], 1) = —)]

& ([ Al 1) # —~pand (JA|, p) =~

& (JAl ) Eeand (|A], 1) =
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Tarski Truth Works for “3”
Proposition 12.3

(IAlp) = Q@r)e < (existsa e |A|)([Al p,a/z) = @
Proof:

(Al 1) = (Bz)e

& (JA]p) F ~(Ve)-e

< (| ) i (Vo)

& not (forall a € |A|)(JA], g, a/z) E —¢

< (forsome a € |A|)(|A|, u,a/z) FE -y
& (forsome a € |A|)(|Al, 1, a/x) E ¢
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FO-VALID = {p |Ey}

“The FO-VALID formulas are the set of formulas ¢ such
that the empty set of formulas |= ¢, that is, such that any
structure of the correct type models .”

Note how we have overloaded the symbol “E”. It can
refer to:

e A structure modeling a formula
e A formula being FO-valid, or
e A set of sentences semantically implying a formula

Proposition 12.5 Let f(¢) = —p. Then,
f : FO-VALID < FO-UNSAT and
f : FO-UNSAT < FO-VALID

The key fact justifying these definitions is that semantic
Implication is the same as propositional implication:

Proposition 12.6
e e F{W—9)

& F (Vo)
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CMPSCI 601: Axioms and Proof Rules L ecture 12

Notation: ForT' C L(X), ¢ € L(X), “T' F ¢” is read,
“I" proves ¢”, and means, “There is a first-order proof of
@ assuming I'.”

We are currently dealing with two different proof systems
for FO predicate calculus, the one in [P] and the (more
familiar-looking) Fitch system used in [BE].

While Fitch has several proof rules, [P] gets by with only
one. (On the other hand, [P] has lots of axioms which
will take us the rest of this lecture to review.)

[P]’s only proof rule is:

Modus Ponens (M.P): L% _;F“iv Lo
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Proposition 12.7 Modus Ponens preserves truth, valid-
ity, and semantic implication, i.e.,

ifARE@e—Yand Al ¢ then A 9.
ifI'=p—>vandl ¢ thenT [ ¥.

Proof: SupposeI' = pand ' = ¢ — .

Let A be arbitrary such that A =T

AEp, AE oV

AFEY

[E o o
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Generalizations
If ¢ is a first-order formula,
then V() is called a generalization of ¢.

Proposition 12.8 If = ¢, then = Vz(¢p).

Proof: Assume that = ¢ where ¢ € L(2).

Let A € STRUCI[X] be arbitrary.

Let a € | A| be arbitrary; (A, a/x) € STRUC[Y]
(A, a/z) =@

foralla € |A], (A,a/x) = ¢

A = V(o)

= V(o)
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CMPSCI 601: First-Order Axioms L ecture 12

all generalizations of the following:

AXO0: Tautologies on at most three boolean variables,
with first-order formula substituted for the variables.

ST S

1. x1 = 1

2.x1 — (21 V x9)
3.
4

.1 — <_I£L’1 — 112)

I1 V 1

(Vu)(Fv)E(u,v) = (Vu)(Fv)E(u,v)
Vz)(z<z4+2) = (Vz2)(z< z+4+2)V (Vy)(y < 2))
(d2)R(z) V —(3z)R(z)

. prime(17) — (—prime(17) — 0 # 0)

Proposition 12.9 All members of AXO0 are valid.
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Equality Axioms
all generalizations of the following:

AXlat =t, forany term¢

AX1b (ty = ti AN - Nty = t) — fltr,...,t,) =
f(ty, ... t,) fortermsty, ... ¢, f € &, r(f) =k

R(ty,...,t,)) forterms ¢y, ... ¢, R I, r(R) =k
Proposition 12.10 Every instance of AX1 is valid.

Proof: Because “=" is interpreted as “identically equal”.

o
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Definition 12.11 Term ¢ is substitutable for variable z in
¢ Iff no free occurrence of x in ¢ is within the scope of a
quantifier for a variable z occurring in ¢.

@|x < t] is the result of substituting ¢ for all free occur-
rences of x in .

We never use this expression unless ¢ is substitutable for
x in . [

z+1,u, f(u), f(u) + v are substitutable for z in «.
y, y + 1 are not substitutable for = in a or ¢.

a = “z 1S not the least element”

alr < z+ 1] = “z+ 1isnot the least element”
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Instantiation Axioms:

all generalizations of the following

AX2:  Vz(p) — ¢lr < t], x a variable, ¢ a term, ¢
substitutable for x in .

Proposition 12.12 Every instance of AX2 is valid.

Proof: Let Va(p) — plz + t] € AX2.

If V() is false in the current interpretation A, we are
done. Otherwise, by the definition of Tarski Truth for V,
@|r < a] is true for any element a of A, so it’s true for
the element represented by ¢. (And truth is preserved by
substituting equals.)

)
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Re-Labeling Bound Variables

Lemma 12.13 Let A, A’ be identical except for how they
Interpret some variables not free in ¢. Then,

Ay &  AEyp

Proof: By induction on .
Base case: ¢ = R(t1,. .., ;)

Inductive case 1: ¢ = —p

Inductive case 2: ¢ = (a V )

Inductive case 2: ¢ = V(1))
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Generalization Axioms

all generalizations of the following:

AX3: ¢ — Vz(p), where z does not occur freely in .

Proposition 12.14 Every instance of AX3 is valid.

Proof: Let o — Vz(p) € AXS.
Let A € STRUCI[X] be arbitrary.
Suppose A E ¢

(1Al p) = Ve(p) < (foralla e |A|)(|Al, p,a/z) = ¢
By Lemma 12.13, A E Vz(yp)

)

But didn’t we just use Generalization to prove General-
Ization?

Not quite. We used mathematical generalization in the
real world to prove that generalization in this logical for-
malism preserves truth.
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One Last Set of Axioms

all generalizations of the following:

AX4: Yx(p — ) = (Va(p) = Va(v))
Proposition 12.15 Every instance of AX4 is valid.
Proof:

(V) = ¢) — ((Vo)(p) = (Vz)(¥)) € AX4

Suppose A E Vz(p — ). (...finish on the whiteboard...)
[ )
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