Boolean variables: $\quad X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$

Boolean expressions:

- literals: $x_{i}, \neg x_{i}, \top, \perp$
- $(\alpha \vee \beta), \neg \alpha$, for α, β Boolean exp's.

Truth assignment: $T: X^{\prime} \subseteq X \rightarrow\{$ true, false $\}$

$$
X(\varphi)=\left\{x_{i} \in X \mid x_{i} \text { occurs in } \varphi\right\}
$$

If $X(\varphi) \subseteq X^{\prime}$, then T is appropriate to $\varphi . T$ assigns truth value to $\varphi: \quad T \models \varphi \quad$ or $\quad T \models \neg \varphi$.

Facts:

1. SAT and Circuit-SAT are NP-complete.
2. Horn-SAT and CVP are P-complete:
3. 2-SAT is is NL-complete:

Boolean circuits provide another model of computation analogous to Turing machine, lambda calculus, etc.

CMPSCI 601: First-Order Logic with Equality Lecture 11

Vocabulary: $\quad \Sigma=(\Phi, \Pi, r)$:
Φ : function symbols,
Π : predicate symbols, $\quad "=" \in \Pi$, not mentioned
r : arity function, $\quad r(=)=2$.

Variables: $\quad V=\left\{x, y, z, x_{1}, y_{1}, z_{1}, \ldots\right\}$

Number Theory: $\quad \Sigma_{N}=\left(\Phi_{N}, \Pi_{N}, r_{N}\right)$
$\Phi_{N}=\{0, \sigma,+, \times, \uparrow\}$
$r_{N}(0)=0, r_{N}(\sigma)=1, r_{N}(+)=r_{N}(\times)=r_{N}(\uparrow)=2$
$\Pi_{N}=\{=,<\}, \quad r_{N}(=)=r_{N}(<)=2$

Graph Theory: $\quad \Sigma_{G}=\left(\Phi_{g}, \Pi_{g}, r_{g}\right)$
$\Phi_{g}=\{s, t\}, \quad r_{g}(s)=r_{g}(t)=0$
$\Pi_{g}=\{=, E\}, \quad r_{g}(=)=r_{g}(E)=2$

Tarski's World: $\quad \Sigma_{T}=\left(\Phi_{T}, \Pi_{T}, r_{T}\right)$
$\Phi_{T}=\{a, b, c, d, e, f\}$
$\Pi_{T}=\{$ Tet, Cube, Dodec, Small, Medium, Large, SameSize, SameShape, Larger, Smaller, SameCol, SameRow, Adjoins, LeftOf, RightOf, FrontOf, BackOf, Between \}

$$
\begin{aligned}
r(a) & =r(b)=r(c)=r(d)=r(e)=r(f)=0 \\
r(\text { Tet }) & =r(\text { Cube })=r(\text { Dodec })=r(\text { Small }) \\
& =r(\text { Medium })=r(\text { Large })=1
\end{aligned}
$$

$$
\begin{aligned}
r(\text { SameSize }) & =r(\text { SameShape })=r(\text { Larger })=r(\text { Smaller }) \\
& =r(\text { SameCol })=r(\text { SameRow })=r(\text { Adjoins }) \\
& =r(\text { LeftOf })=r(\text { RightOf })=r(\text { BackOf })=2
\end{aligned}
$$

$r($ Between $)=3$

terms:

1. variables: x, y, z, \ldots
2. constants: $c \in \Phi, r(c)=0$
3. $f\left(t_{1}, \ldots, t_{k}\right)$, where t_{1}, \ldots, t_{k} are terms, $f \in \Phi, r(f)=$ k
atomic formulas: $R\left(t_{1}, \ldots, t_{k}\right)$, where t_{1}, \ldots, t_{k} terms, $R \in \Pi, r(R)=k$

formulas:

1. atomic formulas
2. $\neg A,(A \vee B)$, where A, B are formulas
3. $(\forall x A)$, where A is a formula
$\mathcal{L}(\Sigma)=$ set of first-order formulas of vocabulary Σ
Abbreviations: (in addition to: $\wedge, \rightarrow, \leftrightarrow)$

$$
\begin{array}{lll}
(\exists x A) & \hookrightarrow & \neg(\forall x \neg A) \\
t_{1} \neq t_{2} & \hookrightarrow & \neg t_{1}=t_{2}
\end{array}
$$

CMPSCI 601:	$\mathcal{L}\left(\Sigma_{N}\right)$
Lecture 11	

Abbreviations:

$$
\begin{array}{ll}
t_{1} \leq t_{2} & \hookrightarrow\left(t_{1}=t_{2} \vee t_{1}<t_{2}\right) \\
1 & \hookrightarrow \sigma(0) \\
2 & \hookrightarrow \sigma(1) \\
3 & \hookrightarrow \sigma(2) \\
t_{1} \mid t_{2} & \hookrightarrow(\exists x)\left(t_{1} \times x=t_{2}\right) \\
\operatorname{prime}\left(t_{1}\right) & \hookrightarrow 1<t_{1} \wedge(\forall x)\left(x \mid t_{1} \rightarrow\left(x=1 \vee x=t_{1}\right)\right)
\end{array}
$$

1. $(\forall x)(x+0=x)$
2. $(\exists y)(y+y=x)$
3. $(\forall x y)(x \leq y \leftrightarrow(\exists z)(x+z=y))$
4. $(\forall x)(\exists y)(x<y \wedge \operatorname{prime}(y))$
5. $(\forall x y)(\sigma(x)=\sigma(y) \rightarrow x=y)$
6. $(\forall x y)(x<y \rightarrow \sigma(x) \leq y)$

CMPSCI 601:	$\mathcal{L}\left(\Sigma_{g}\right)$
Lecture 11	

1. $(\forall x y)(E(x, y) \rightarrow E(y, x))$
2. $(\forall x)(\neg E(x, x))$
3. $(\forall x)(\exists y)(E(x, y) \vee E(y, x))$
4. $(\forall x)(\neg E(x, s))$
5. $(\exists y z)(y \neq z \wedge E(x, y) \wedge E(x, z))$
6. $\left(\forall y_{1} y_{2} y_{3}\right)\left(\left(E\left(x, y_{1}\right) \wedge E\left(x, y_{2}\right) \wedge E\left(x, y_{3}\right)\right)\right.$

$$
\left.\rightarrow \quad\left(y_{1}=y_{2} \vee y_{1}=y_{3} \vee y_{2}=y_{3}\right)\right)
$$

An occurrence of a variable x is bound iff it occurs within the scope of a quantifier, $(\forall x)$ or $(\exists x)$. Otherwise the occurrence is free.

1. $(\exists y z)(y \neq z \wedge E(x, y) \wedge E(x, z))$
2. $(\forall z)(z+x=z)$
3. $(\forall y)(y+x=y)$
4. $(\forall x)(x+x=x)$
5. $x \neq y \wedge(\exists y)(y<x)$

Bound variables are dummy variables - you can change their names without affecting the meaning.

A first-order formula says something about its free variables. You cannot determine the meaning of the formula without knowing the values of the free variables.

A structure - also called a model - of a vocabulary $\Sigma=(\Phi, \Pi, r)$ is a pair $\mathcal{A}=(U, \mu)$ such that:

$$
\begin{aligned}
& U=|\mathcal{A}| \neq \emptyset \\
& \mu: V \rightarrow U \\
& x \mapsto x^{\mathcal{A}} \\
& \mu: \Phi \rightarrow \text { total functions on } U^{O(1)} \\
& \mu: f \mapsto f^{\mathcal{A}}: U^{r(f)} \rightarrow U \\
& \mu: \Pi \rightarrow \text { relations on } U^{O(1)} \\
& \mu: R \mapsto R^{\mathcal{A}} \subseteq U^{r(R)}
\end{aligned}
$$

How's That Again?

We specify the universe, variable values, functions, and relations by finite lookup tables. This is the information we need to decide whether a formula is true or false.

Example: Any world, \mathcal{W}, for Tarski's World is is structure of vocabulary Σ_{T}, i.e, $\mathcal{W} \in \operatorname{STRUC}\left[\Sigma_{T}\right]$.

Figure 11.1: Graphs G and H

$$
G=\left\langle V^{G}, 1,3, E^{G}\right\rangle \in \operatorname{STRUC}\left[\Sigma_{g}\right]
$$

$$
\begin{aligned}
& V^{G}=\{0,1,2,3,4\} \\
& E^{G}=\{(1,2),(3,0),(3,1),(3,2),(3,4),(4,0)\}
\end{aligned}
$$

is a structure of vocabulary Σ_{g}, consisting of a directed graph with two specified vertices s and t. G has five vertices and six edges. (See Figure 11.1 which shows G as well as another graph H which is isomorphic but not equal to G.)

Binary String: $\quad w=" 01101 "$.

$$
\mathcal{A}_{w}=\langle\{0,1, \ldots, 4\},<,\{1,2,4\}\rangle \in \operatorname{STRUC}\left[\Sigma_{s}\right]
$$

$$
\begin{aligned}
\Sigma_{s} & =(\emptyset,\{=,<, S\},\{\langle=, 2\rangle,\langle<, 2\rangle,\langle S, 1\rangle\}) \\
& =\left(;<^{2}, S^{1}\right)
\end{aligned}
$$

1. $(\exists x)(\forall y)(y \leq x \wedge S(x))$
2. $(\forall x y)((x<y \wedge \neg S(x) \wedge \neg S(y)) \rightarrow(\exists z)(x<z<y))$

sentence $=$ formula with no free variables

$$
\begin{aligned}
& \Sigma_{g e n}=\quad\left(; F^{1}, P^{2}, S^{2}\right) \\
& \mathcal{B}_{0}=\left\langle U_{0}, F_{0}, P_{0}, S_{0}\right\rangle \in \operatorname{STRUC}\left[\Sigma_{g e n}\right]
\end{aligned}
$$

$$
\begin{aligned}
U_{0} & =\{\text { Abraham, Isaac, Rebekah, Sarah, } \ldots\} \\
F_{0} & =\{\text { Sarah, Rebekah, } \ldots\} \\
P_{0} & =\{\langle\text { Abraham,Isaac }\rangle,\langle\text { Sarah,Isaac }\rangle, \ldots\} \\
S_{0} & =\{\langle\text { Abraham,Sarah }\rangle,\langle\text { Isaac,Rebekah }\rangle, \ldots\}
\end{aligned}
$$

$$
\begin{aligned}
\varphi_{\text {sibling }}(x, y) \equiv & (\exists f m)(x \neq y \wedge f \neq m \wedge \\
& P(f, x) \wedge P(f, y) \wedge P(m, x) \wedge P(m, y)) \\
\varphi_{\text {aunt }}(x, y) \equiv & \left(\exists p s \left(P(p, y) \wedge \varphi_{\text {sibling }}(p, s) \wedge\right.\right. \\
& (s=x \vee S(x, s))) \wedge F(x)
\end{aligned}
$$

$\mathbf{N}=(\mathbf{N}, 0, \sigma,+, \times, \uparrow,<)$, the standard model of the naturals
$\mathbf{Z} / p \mathbf{Z}=\left(\{0,1, \ldots, p-1\}, 0,+1_{p},+_{p}, \times_{p}, \uparrow_{p}, \emptyset\right), p$ prime $\mathbf{N}, \mathbf{Z} / p \mathbf{Z} \in \operatorname{STRUC}\left[\Sigma_{N}\right]$

$$
\text { MultInverses } \equiv(\forall u)(u=0 \vee(\exists v)(u \times v=1))
$$

$\mathbf{N} \models \neg$ MultInverses; $\quad \mathbf{Z} / p \mathbf{Z} \models$ MultInverses

Extend the function $\mu:$ terms $\rightarrow|\mathcal{A}|$, (already defined on variables and constants).

$$
\mu\left(f_{j}\left(t_{1}, \ldots, t_{r\left(f_{j}\right)}\right)\right)=f_{j}^{\mathcal{A}}\left(\mu\left(t_{1}\right), \ldots, \mu\left(t_{r\left(f_{j}\right)}\right)\right)
$$

Now every term has a meaning.

Tarski's Inductive Definition of Truth:

$$
\begin{aligned}
(|\mathcal{A}|, \mu) \models t_{1}=t_{2} & \Leftrightarrow \mu\left(t_{1}\right)=\mu\left(t_{2}\right) \\
(|\mathcal{A}|, \mu) \models R_{j}\left(t_{1}, \ldots, t_{r\left(R_{j}\right)}\right) & \Leftrightarrow\left\langle\mu\left(t_{1}\right), \ldots, \mu\left(t_{r\left(R_{j}\right)}\right)\right\rangle \in R_{j}^{\mathcal{A}} \\
(|\mathcal{A}|, \mu) \models \neg \varphi & \Leftrightarrow(|\mathcal{A}|, \mu) \not \models \varphi \\
(|\mathcal{A}|, \mu) \models \varphi \vee \psi & \Leftrightarrow(|\mathcal{A}|, \mu) \models \varphi \text { or }(|\mathcal{A}|, \mu) \models \psi \\
(|\mathcal{A}|, \mu) \models(\forall x) \varphi & \Leftrightarrow \text { (for all } a \in|\mathcal{A}|)(|\mathcal{A}|, \mu, a / x) \models
\end{aligned}
$$

where

$$
(\mu, a / x)(y)=\left\{\begin{array}{cl}
\mu(y) & \text { if } y \neq x \\
a & \text { if } y=x
\end{array}\right.
$$

Play Tarski's Truth Game!!!

world: $\mathcal{W} ; \quad$ sentence: $\varphi ; \quad$ players: A, B
A asserts that $\mathcal{W} \models \varphi ; \quad B$ denies that $\mathcal{W} \models \varphi$.
The game rules depend inductively on the formula φ :
φ is atomic: $\quad A$ wins iff $\mathcal{W} \models \varphi$.
$\varphi \equiv \alpha \vee \beta: \quad A$ asserts $\mathcal{W} \models \alpha$ or A asserts $\mathcal{W} \models \beta$.
$\varphi \equiv \alpha \wedge \beta: \quad B$ denies $\mathcal{W} \models \alpha$ or B denies $\mathcal{W} \models \beta$.
$\varphi \equiv \neg \alpha: \quad A$ and B switch rôles, and B asserts $\mathcal{W} \models$ α.
$\varphi \equiv \exists x(\psi): \quad A$ chooses an element from $|\mathcal{W}|$, assigning it a name n. A asserts that $\mathcal{W}^{\prime} \models \psi[x \leftarrow n]$.
$\varphi \equiv \forall x(\psi): \quad B$ chooses an element from $|\mathcal{W}|$, assigning it a name n. B denies that $\mathcal{W}^{\prime} \models \psi[x \leftarrow n]$.

Example: \quad Does $\mathbf{Z} / 3 \mathbf{Z} \models(\forall u)(u=0 \vee(\exists v)(u \times v=$ 1))?

$$
\begin{aligned}
& \mathbf{Z} / 3 \mathbf{Z}, \mu_{0} \models(\forall u)(u=0 \vee(\exists v)(u \times v=1)) \\
\Leftrightarrow & (\text { forall } a \in\{0,1,2\}) \\
& \left(\mathbf{Z} / 3 \mathbf{Z}, \mu_{0}, a / u\right) \models(u=0 \vee(\exists v)(u \times v=1), \\
& \left(\mathbf{Z} / 3 \mathbf{Z}, \mu_{0}, 0 / u\right) \models u=0 \\
\Leftrightarrow & \left(\mu_{0}, 0 / u\right)(u)=\left(\mu_{0}, 0 / u\right)(0) \\
\Leftrightarrow & 0=0 \\
& \left(\mathbf{Z} / 3 \mathbf{Z}, \mu_{0}, 1 / u\right) \models(\exists v)(u \times v=1) \\
\Leftrightarrow & (\text { exists } b \in\{0,1,2\})\left(\mathbf{Z} / 3 \mathbf{Z}, \mu_{0}, 1 / u, b / v\right) \models(u \times v=1) \\
& \left(\mathbf{Z} / 3 \mathbf{Z}, \mu_{0}, 1 / u, 1 / v\right) \models(u \times v=1)
\end{aligned}
$$

Similarly,

$$
\left(\mathbf{Z} / 3 \mathbf{Z}, \mu_{0}, 2 / u\right) \models(\exists v)(u \times v=1)
$$

Proposition 11.2

$$
(|\mathcal{A}|, \mu) \models \varphi \wedge \psi \quad \Leftrightarrow \quad(|\mathcal{A}|, \mu) \models \varphi \text { and }(|\mathcal{A}|, \mu) \models \psi
$$

Proof:

$$
\begin{aligned}
& (|\mathcal{A}|, \mu) \models \varphi \wedge \psi \\
\Leftrightarrow & (|\mathcal{A}|, \mu) \models \neg(\neg \varphi \vee \neg \psi) \\
\Leftrightarrow & \operatorname{not}(|\mathcal{A}|, \mu) \models \neg \varphi \vee \neg \psi \\
\Leftrightarrow & \operatorname{not}[((|\mathcal{A}|, \mu) \models \neg \varphi) \text { or }((|\mathcal{A}|, \mu) \models \neg \psi)] \\
\Leftrightarrow & (|\mathcal{A}|, \mu) \not \models \neg \varphi \operatorname{and}(|\mathcal{A}|, \mu) \not \models \neg \psi \\
\Leftrightarrow & (|\mathcal{A}|, \mu) \models \varphi \operatorname{and}(|\mathcal{A}|, \mu) \models \psi
\end{aligned}
$$

Proposition 11.3

$(|\mathcal{A}|, \mu) \models(\exists x) \varphi \quad \Leftrightarrow \quad($ exists $a \in|\mathcal{A}|)(|\mathcal{A}|, \mu, a / x) \models \varphi$

Proof:

$$
\begin{aligned}
& (|\mathcal{A}|, \mu) \models(\exists x) \varphi \\
\Leftrightarrow & (|\mathcal{A}|, \mu) \models \neg(\forall x) \neg \varphi \\
\Leftrightarrow & (|\mathcal{A}|, \mu) \not \models(\forall x) \neg \varphi \\
\Leftrightarrow & \text { not }(\text { for all } a \in|\mathcal{A}|)(|\mathcal{A}|, \mu, a / x) \models \neg \varphi \\
\Leftrightarrow & (\text { for some } a \in|\mathcal{A}|)(|\mathcal{A}|, \mu, a / x) \not \models \neg \varphi \\
\Leftrightarrow & (\text { for some } a \in|\mathcal{A}|)(|\mathcal{A}|, \mu, a / x) \models \varphi
\end{aligned}
$$

Definition $11.4 \mathcal{A}, \mathcal{B} \in \operatorname{STRUC}[\Sigma], \Sigma=(\Phi, \Pi, r)$ \mathcal{A} is a substructure of $\mathcal{B},(\mathcal{A} \leq \mathcal{B})$, iff:

1. $|\mathcal{A}| \subseteq|\mathcal{B}|$
2. For $f \in \Phi, f^{\mathcal{A}}=f^{\mathcal{B}} \cap|\mathcal{A}|^{r(f)+1}$
3. For $R \in \Pi, R^{\mathcal{A}}=R^{\mathcal{B}} \cap|\mathcal{A}|^{r(R)}$

C
A and B but not C are substructures of G.

Definition $11.5 \mathcal{A}, \mathcal{B} \in \operatorname{STRUC}[\Sigma] . \mathcal{A}$ is isomorphic to $\mathcal{B}(\mathcal{A} \cong \mathcal{B})$ iff exists $\eta:|\mathcal{A}| \rightarrow|\mathcal{B}|$,

1. η is $1: 1$ and onto.
2. For every $R \in \Pi$, tuple $e_{1}, \ldots, e_{r(R)} \in|\mathcal{A}|$

$$
\left(\left\langle e_{1}, \ldots, e_{r(R)}\right\rangle \in R^{\mathcal{A}}\right) \quad \leftrightarrow \quad\left(\left\langle\eta\left(e_{1}\right), \ldots, \eta\left(e_{r(R)}\right)\right\rangle \in R^{\mathcal{B}}\right)
$$

3. For every $f \in \Phi$, tuple $e_{1}, \ldots, e_{r(f)} \in|\mathcal{A}|$,

$$
\eta\left(f^{\mathcal{A}}\left(e_{1}, \ldots, e_{r(f)}\right)\right) \quad=\quad f^{\mathcal{B}}\left(\eta\left(e_{1}\right), \ldots, \eta\left(e_{r(f)}\right)\right)
$$

An isomorphism changes only the names of the elements of the universe. All the symbols of Σ are preserved.
Definition 11.6 Let $\mathcal{A}, \mathcal{B} \in \operatorname{STRUC}[\Sigma]$. We say that \mathcal{A} and \mathcal{B} are elementarily equivalent $(\mathcal{A} \equiv \mathcal{B})$ iff for all sentences $\varphi \in \mathcal{L}(\Sigma), A \models \varphi \quad \Leftrightarrow \quad B \models \varphi$.

Proposition 11.7 If $\mathcal{A} \cong \mathcal{B}$ then $\mathcal{A} \equiv \mathcal{B}$.

