CMPSCI 601: Recall From Last Time L ecture 10

Thm: The following problems are in polynomial time.

EmptyNFA = {N | Nisan NFA; L(N) = 0}
S*DFA = {D | DisaDFA; £(D)= %"}
MemberNFA = {(N,w) | Nisan NFA; w € L(N)}
EqualDFA = {(D,D,) | Dy, Dy DFAs; £(D;) = £(D5)}
EmptyCFL = {G | G isaCFG; L(G) = 0}

MemberCFL = {(G,w) | GisaCFG; w € L(G)}

Thm: >*-CFL is co-RE complete.



CMPSCI 601 Logic Lecture 10

We turn now to a unit on mathematical logic, the study
of how mathematicians do mathematics. We model this
process as a piece of mathematics itself, defining mathe-
matical entities such as propositions and proof systems,
and proving things about them.

Because our problems are so general and abstract, it is of-
ten hard to see exactly what real problems we are dealing
with.

Logic Is important to computer science in two main ways:

1. Because computers implement mathematically-defined
rules, the results of logic tell us things about com-
putability and complexity.

2. The problems of logic themselves provide applica-
tions for computing.



CMPSCI 601 Boolean Logic: Syntax Lecture 10

Boolean variables: X = {zy, 25, z3,...}

A boolean variable represents an atomic statement that
may be either true or false.

Boolean expressions:
e atomic:: x;, T, L

e (aV ), ~a, for a, B Boolean exp’s.

A literal is an atomic expression or its negation: x;, —x;,
T, L.

Abbreviations:

s IS an abbreviation for “is an abbreviation for”
(A B) — ~(—a VvV —B)
(o — B) — (ma VvV B)

(a <> ) — (a—= B N = a)



Examples of boolean expressions:
® I
® by, \V —bs
® 1 <> X9

o ((a—=b)AN(b—c)— (a—c



CS601/CM730-A: Boolean Logic: Semantics Lecture 8

Truth assignment: 7 : X' C X — {true, false}

X(p) = {x; € X | z;occursin o}
If X(¢) C X', then T is appropriate to ¢. T assigns
truth value to ¢:
TlkT T L
T E x; & T(z;) = true
TE(aVp) & TEao TESf
T E -« & THa
Lemma 10.1
TE(aNp) & TEaand TEP
TEa—-p & THaorTE}S
TEa+pf & TEaiff TEP




Definition 10.2 « and S are semantically equivalent

(= p)
Iff for all T" appropriate to « and £,

Tk (a < p)

oer; = x1V_L

ea—a = T

ea—b = —-b— —a

ea—b = —-aVb

e <(aANb) = —aV b

e <(aVb) = —aA-b
eaVb=>bVa

e (aVb)Vec =aV(bVc)
eaV(bAc) = (aVb) A(aVc)

e —= ——(Qq



Proposition 10.3 Every boolean expression, ¢, Is equiv-
alent to one in Conjunctive Normal Form (CNF), and to
one in Disjunctive Normal Form (DNF).

Proof: DNF: look at the truth table for ¢:

(x <
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(ZAGAz) V (EAYNZ)V (xAGANZ) V (xAYyAz)

CNF: put —¢ in DNF.
Use De Morgan’s law:

~(CLV VO = (<O A - A =CY)






Proposition 10.7 SAT € NP

Proof: ¢ € SAT & ()T E )

Given ¢, with X(p) = {x1, T2, 3, ...\, Ty_1, Ty }
Nondeterminsitically, T := by, by, b3, ..., by_1, b,

Accept iff T = ¢



CMPSCI 601: Horn-SAT Lecture 10

Horn formulas are CNF formulas with at most one posi-
tive literal per clause. (Compare to PROLOG, not that |
know anything about PROLOG.)

Theorem 10.8 HORN-SAT € P
Algorithm 10.9 HORN-SAT (y)

1. T :=0 [/ novariables assigned true

2. while (T F~ ¢) {
3. choose clause 8 <+ «q, ..., a, not satisfied

4, T:=TU{p}}
5.1f (L € T') then reject else accept
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CMPSCI 601 2-SAT Lecture 10

2-SAT =

{o € SAT | ¢ € CNF with two literals per clause}

0o = (x1VT3) N (x2V7T3) N (23V 27)

Fact 10.10 2-SAT € P and infact 2-SAT is complete
for NSPACE|[log n).

Given a 2-CNF formula ¢, define the directed graph f(¢) =
(Ve, E,) as follows:

Vgp — {xlax—la <. Jx’nax—n}
E, ={(u,v)|(aVwv)or(vVa)occursin .}
(Two bars cancel out, so @ = u.)

(p € 2-SAT) & (Vz € X(p))“z, Z notin same SCC”

SCC = strongly connected component
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(p € 2-SAT) < (Vz € X(yp))“z,Z notin same SCC”

]
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<
8
>
)
<
X
>
)
<
E

Example: ¢

There is a path from « to z, so =z must hold.
There is a path from z to z, so z must hold.

Either y or 7 may hold; @ € 2-SAT
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CMPSCI 601: Boolean Circuits L ecture 10

Definition 10.11 A boolean circuit is a rooted directed,
acyclic graph (DAG), C = (V, E, s, ),

s:V — {true, false, v, A=} U {x1,2o,...}
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CMPSCI 601: Circuit-SAT L ecture 10

Proposition 10.12 Circuit-SAT € NP
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CMPSCI 601 CVP Lecture 10

Proposition 10.13 Circuit Value Problem (CVP) € P
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CMPSCI 601: Circuit Classes L ecture 10

Circuits give a low-level model of computation, partic-
ularly of parallel computation (since gates on the same
level operate in parallel).

C = {C4,Cs, Cs, ...} asequence of boolean circuits.
where C), has inputs x1, o, . .., T,

LEC) = {we{0,1} | Cy(w) =1}

Circuits are a hardware implementation of straight-line
programs.

gate[ 1] = i1 nput][1]

gate[ 2] = i nput] 2]

gate[ 3] = not gate[ 1]

gate[ 4] = not gate[ 2]

gate[ 5] = gate[l1l] and gate[ 4]
gate[ 6] = gate[2] and gate[ 3]
gate[ 7] = gate[5] or gate[6]
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Complexity Resources for Circuits:

e Size = number of gates and wires
e Depth = length of longest path from r to leaf
e Uniformity = complexity of f : n — C,
We define classes based on these, just as we defined classes

based on time and space for Turing machines. We’ll see
much more about these classes later.
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