CMPSCI601: Introduction Lecture 1

In-depth introduction to main models, concepts of theory of computation:

- Computability: what can be computed in principle
- Logic: how can we express our requirements
- Complexity: what can be computed in practice

Formal Models of Computation:

- Finite-state
- Stacks $=$ CFL
- Turing Machine
- Logical Formula

CMSPSCI 601: Requirements
Texts: available at Jeffery Amherst College Store
[P]: Christos Papadimitriou, Computational Complexity
[BE:] Jon Barwise and John Etchemendy, Language, Proof, and Logic

Prerequisites: Mathematical maturity: reason abstractly, understand and write proofs. CMPSCI 250 needed; CMPSCI 311, 401 helpful. Today's material is a good taste of the sort of stuff we will do.

Work:

- eight problem sets (35% of grade)
- midterm (30% of grade)
- final (35\% of grade)

Cooperation: Students should talk to each other and help each other; but write up solutions on your own, in your own words. Sharing or copying a solution could result in failure. If a significant part of one of your solutions is due to someone else, or something you've read then you must acknowledge your source!

CMSPCI 601: On Reserve in Dubois Library Lecture 1

Mathematical Sophistication

- How to Read and Do Proofs, Second Edition by Daniel Solow, 1990, John Wiley and Sons.

Review of Regular and Context-Free Languages

- Hopcroft, Motwani, and Jeffrey D. Ullman, Introduction to Automata Theory, Languages, and Computation, 2001: Chapters 1-6.
- Lewis and Papadimitriou, Elements of the Theory of Computation, 1998: Chapters 1-3.
- Sipser, Introduction to the Theory of Computation, 1997: Chapters 1-2.

NP Completeness

- Garey and Johnson, Computers and Intractability, 1979.

Descriptive Complexity

- Immerman, Descriptive Complexity, 1999.

Syllabus will be up soon on the course web site:

- http://www.cs.umass.edu/ barring/cs601

There is a pointer there to the Spring 2002 web site, and the syllabus there will be close to what we do here. Rough guide:

- Formal Languages and Computability (9 lectures)
- Propositional and First-Order Logic (7 lectures)
- Complexity Theory (11 lectures)

Definition: An alphabet is a non-empty finite set, e.g., $\Sigma=\{0,1\}, \Gamma=\{a, b, c\}$, etc.

Definition: A string over an alphabet Σ is a finite sequence of zero or more symbols from Σ. The unique string with zero symbols is called ϵ. The set of all strings over Σ is called Σ^{*}.

Definition: A language over Σ is any subset of Σ^{*}. The decision problem for a language L is to input a string w and determine whether $w \in L$.

Definition: The set of regular expressions $R(\Sigma)$ over alphabet Σ is the smallest set of strings such that:

1. if $a \in \Sigma$ then $a \in R(\Sigma)$
2. $\epsilon \in \mathbf{R}(\Sigma)$
3. $\emptyset \in \mathbf{R}(\Sigma)$
4. if $e, f \in R(\Sigma)$ then so are the following:
(a) $(e \cup f)$
(b) $(e \circ f)$
(c) $\left(e^{\star}\right)$

Examples:

$$
\begin{aligned}
& \text { - } e_{1}=0^{\star} \in R(\{0,1\}) \\
& \text { - } e_{2}=((a \cup b) \circ(a \cup b))^{\star} \in R(\{a, b\}) \\
& \text { - } e_{3}=a^{\star}\left(b a^{\star} b a^{\star}\right)^{\star} \in R(\{a, b, c\})
\end{aligned}
$$

Meanings:

- $\mathcal{L}\left(0^{\star}\right)=\left\{\epsilon, 0,00,0^{3}, 0^{4}, \ldots\right\}=\left\{0^{i} \mid i \in \mathbf{N}\right\}$
- $\mathcal{L}\left((a \cup b)^{2 \star}\right) \quad=\quad\left\{w \in\{a, b\}^{\star}| | w \mid \equiv 0(\bmod 2)\right\}$
- $\mathcal{L}\left(a^{\star}\left(b a^{\star} b a^{\star}\right)^{\star}\right) \quad=\quad\left\{w \in\{a, b\}^{\star} \mid \#_{b}(w) \equiv\right.$ $0(\bmod 2)\}$

Recall the meaning of Kleene star, for any set, A,

$$
\begin{aligned}
A^{\star} & \equiv \bigcup_{i=0}^{\infty} A^{i} \\
& \equiv A^{0} \cup A^{1} \cup A^{2} \cup \cdots \\
& \equiv\{\epsilon\} \cup A \cup\{x y \mid x, y \in A\} \cup \cdots \\
& \equiv\left\{x_{1} x_{2} \ldots x_{n} \mid n \in \mathbf{N} ; x_{1}, \ldots, x_{n} \in A\right\}
\end{aligned}
$$

Meaning of a Regular Expression:

1. if $a \in \Sigma$ then $a \in R(\Sigma) ; \mathcal{L}(a)=\{a\}$
2. $\epsilon \in \mathbf{R}(\Sigma) ; \mathcal{L}(\epsilon)=\{\epsilon\}$
3. $\emptyset \in \mathbf{R}(\Sigma) ; \mathcal{L}(\emptyset)=\emptyset$
4. if $e, f \in R(\Sigma)$ then so are $(e \cup f),(e \circ f),\left(e^{\star}\right)$:
$\mathcal{L}(e \cup f)=\mathcal{L}(e) \cup \mathcal{L}(f)$
$\mathcal{L}(e \circ f)=\mathcal{L}(e) \mathcal{L}(f)=\{u v \mid u \in \mathcal{L}(e), v \in \mathcal{L}(f)\}$
$\mathcal{L}\left(e^{\star}\right)=(\mathcal{L}(e))^{\star}$

Definition 1.1 $A \subseteq \Sigma^{\star}$ is regular iff

$$
(\exists e \in R(\Sigma))(A=\mathcal{L}(e))
$$

In other words, a set, A, is regular iff there exists a regular expression that denotes it.

Definition: A deterministic finite automaton (DFA)

 is a tuple,$$
D=(Q, \Sigma, \delta, s, F)
$$

- Q is a finite set of states,
- Σ is a finite alphabet,
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function,
- $s \in Q$ is the start state, and
- $F \subseteq Q$ is the set of final or accept states.

$$
\begin{aligned}
& D_{1}=\left(\{s, q\},\{a, b\}, \delta_{1}, s,\{s\}\right) \\
& \delta_{1}=\{\langle\langle s, a\rangle, s\rangle,\langle\langle s, b\rangle, q\rangle,\langle\langle q, a\rangle, q\rangle,\langle\langle q, b\rangle, s\rangle\} \\
& \begin{array}{cccccccccc}
a & a & b & b & a & b & a & a & b & a
\end{array} \\
& S \\
& \mathcal{L}_{1}=\mathcal{L}\left(D_{1}\right)=\left\{w \in\{a, b\}^{\star} \mid \#_{b}(w) \equiv 0(\bmod 2)\right\} \\
& \mathcal{L}_{1}=\mathcal{L}\left(a^{\star}\left(b a^{\star} b a^{\star}\right)^{\star}\right)
\end{aligned}
$$

Definition: A nondeterministic finite automaton (NFA) is a tuple,

$$
N=(Q, \Sigma, \Delta, s, F)
$$

- Q is a finite set of states,
- Σ is a finite alphabet,
- $\Delta:(Q \times(\Sigma \cup\{\epsilon\}) \rightarrow \wp(Q)$ is the transition function,
- $s \in Q$ is the start state, and
- $F \subseteq Q$ is the set of final or accept states.

$$
\mathcal{L}(N)=\left\{w \mid \underset{w}{s_{\rightarrow}^{*}} q \in F\right\}
$$

$\wp(S)=$ power set of $S=\{A \mid A \subseteq S\}$

$$
\begin{aligned}
& N_{n}=\left(\left\{q_{0}, \ldots, q_{n+1}\right\},\{0,1\}, \Delta_{n}, q_{0},\left\{q_{n+1}\right\}\right) \\
& \Delta_{n}=\left\{\left\langle\left\langle q_{0}, 0\right\rangle,\left\{q_{0}\right\}\right\rangle,\left\langle\left\langle q_{0}, 1\right\rangle,\left\{q_{0}, q_{1}\right\}\right\rangle, \ldots,\left\langle\left\langle q_{n}, 1\right\rangle,\left\{q_{n+1}\right\}\right\rangle\right\}
\end{aligned}
$$

[You will show in HW 1 that to accept $\mathcal{L}\left(N_{n}\right)$, a DFA would need 2^{n+1} states.]

Proposition 1.2 Every NFA N can be translated into an NFA wo ϵ-transitions N^{\prime} s.t. $\mathcal{L}(N)=\mathcal{L}\left(N^{\prime}\right)$

Proof: Given $N=\left(Q, \Sigma, \Delta, q_{0}, F\right)$, let $N^{\prime}=\left(Q, \Sigma, \Delta^{\prime}, q_{0}, F^{\prime}\right)$ where

$$
\begin{aligned}
\Delta^{\prime}(q, a) & =\left\{r \mid(\exists s, t) q \stackrel{\epsilon^{*}}{\rightarrow} s \stackrel{a}{\rightarrow} t \stackrel{\epsilon^{*}}{\leftrightarrows} r\right\} \\
\mathbf{F}^{\prime} & =\{q \mid(\exists s \in F) q \stackrel{\text { 买 }}{\leftrightarrows} s\}
\end{aligned}
$$

N

N^{\prime}

Notation: For a DFA, $D=(Q, \Sigma, \delta, s, F)$, let $\delta^{\star}(q, w)$ be the state that D will be in after reading string w, when started in q,

$$
\begin{array}{r}
\delta^{\star}(q, \epsilon) \equiv q \\
\delta^{\star}(q, w a) \equiv \delta\left(\delta^{\star}(q, w), a\right) \\
\mathcal{L}(D) \equiv\left\{w \mid \delta^{\star}(s, w) \in F\right\}
\end{array}
$$

For an NFA without ϵ transitions, $N=(Q, \Sigma, \Delta, s, F)$, let $\Delta^{\star}(q, w)$ be the set of states that N can be in after reading string w, when started in q,

$$
\begin{aligned}
\Delta^{\star}(q, \epsilon) & :=\{q\} \\
\Delta^{\star}(q, w a) & :=\underset{r \in \Delta^{\star}(q, w)}{\cup} \Delta(r, a) \\
\mathcal{L}(N) & \equiv\left\{w \mid \Delta^{\star}(s, w) \cap F \neq \emptyset\right\}
\end{aligned}
$$

Proposition 1.3 For every NFA, N, with n states, there is a DFA, D, with at most 2^{n} states s.t. $\mathcal{L}(D)=\mathcal{L}(N)$.

Proof: Let $N=\left(Q, \Sigma, \Delta, q_{0}, F\right)$. By Proposition 1.2 may assume that N has no ϵ transitions.
Let $D=\left(\wp(Q), \Sigma, \delta,\left\{q_{0}\right\}, F^{\prime}\right)$

$$
\begin{aligned}
\delta(S, a) & =\bigcup_{r \in S} \Delta(r, a) \\
F^{\prime} & =\{S \subseteq Q \mid S \cap F \neq \emptyset\}
\end{aligned}
$$

N

D

Claim: For all $w \in \Sigma^{\star}$,

$$
\delta^{\star}\left(\left\{q_{0}\right\}, w\right)=\Delta^{\star}\left(q_{0}, w\right)
$$

By induction on $|w|$:
$|w|=0: \delta^{\star}\left(\left\{q_{0}\right\}, \epsilon\right)=\left\{q_{0}\right\}=\Delta^{\star}\left(q_{0}, \epsilon\right)$
$|w|=k+1: w=u a$.
Inductively, $\delta^{\star}\left(\left\{q_{0}\right\}, u\right)=\Delta^{\star}\left(q_{0}, u\right)$

$$
\begin{aligned}
\delta^{\star}\left(\left\{q_{0}\right\}, u a\right) & =\delta\left(\delta^{\star}\left(\left\{q_{0}\right\}, u\right), a\right) \\
& =\underset{r \in \delta^{\star}\left(\left\{q_{0}\right\}, u\right)}{\cup} \Delta(r, a) \\
& =\underset{r \in \Delta^{\star}\left(q_{0}, u\right)}{\cup} \Delta(r, a) \\
& =\Delta^{\star}(q, u a)
\end{aligned}
$$

Therefore, $\mathcal{L}(D)=\mathcal{L}(N)$.

Theorem 1.4 (Kleene's Th) Let $A \subseteq \Sigma^{\star}$ be any language. Then the following are equivalent:

1. $A=\mathcal{L}(D)$, for some DFA D.
2. $A=\mathcal{L}(N)$, for some NFA N wo ϵ transitions
3. $A=\mathcal{L}(N)$, for some $N F A N$.
4. $A=\mathcal{L}(e)$, for some regular expression e.
5. A is regular.

Proof: Obvious that $1 \rightarrow 2 \rightarrow 3$.
$3 \rightarrow 2$ by Prop. 1.2.
$2 \rightarrow 1$ by Prop. 1.3 (subset construction).
$4 \leftrightarrow 5$ by def of regular
$4 \rightarrow 3$: We show by induction on the number of symbols in the regular expression e, that there is an NFA N with $\mathcal{L}(e)=\mathcal{L}(N):$

$$
e=a \quad e=\varepsilon \quad e=\emptyset
$$

$$
\begin{aligned}
& 3 \rightarrow 4: \text { Let } N=(\{1, \ldots, n\}, \Sigma, \Delta, 1, F), F=\left\{f_{1}, \ldots, f_{r}\right\} \\
& L_{i j}^{k} \equiv\left\{w \mid j \in \Delta^{\star}(i, w) ; \text { no intermediate state } \#>k\right\} \\
& L_{i j}^{0}=\{a \mid j \in \Delta(i, a)\} \cup\{\epsilon \mid i=j\} \\
& L_{i j}^{k+1}=L_{i j}^{k} \cup L_{i k+1}^{k}\left(L_{k+1 k+1}^{k}\right)^{\star} L_{k+1, j}^{k} \\
& \quad e
\end{aligned}
$$

