
CMPSCI601: Introduction Lecture 1

In-depth introduction to main models, concepts of theory
of computation:

� Computability: what can be computed in principle
� Logic: how can we express our requirements
� Complexity: what can be computed in practice

Problem
Mathematical

Concrete

Model

Formal Models of Computation:

� Finite-state
� Stacks = CFL
� Turing Machine
� Logical Formula
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CMSPSCI 601: Requirements Lecture 1

Texts: available at Jeffery Amherst College Store

[P]: Christos Papadimitriou, Computational Complex-
ity

[BE:] Jon Barwise and John Etchemendy, Language,
Proof, and Logic

Prerequisites: Mathematical maturity: reason abstractly,
understand and write proofs. CMPSCI 250 needed;
CMPSCI 311, 401 helpful. Today’s material is a good
taste of the sort of stuff we will do.

Work:
� eight problem sets (35% of grade)
� midterm (30% of grade)
� final (35% of grade)

Cooperation: Students should talk to each other and
help each other; but write up solutions on your own,
in your own words. Sharing or copying a solution
could result in failure. If a significant part of one
of your solutions is due to someone else, or some-
thing you’ve read then you must acknowledge your
source!
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CMSPCI 601: On Reserve in Dubois Library Lecture 1

Mathematical Sophistication

� How to Read and Do Proofs, Second Edition by Daniel
Solow, 1990, John Wiley and Sons.

Review of Regular and Context-Free Languages

� Hopcroft, Motwani, and Jeffrey D. Ullman, Introduc-
tion to Automata Theory, Languages, and Computa-
tion, 2001: Chapters 1–6.

� Lewis and Papadimitriou, Elements of the Theory of
Computation, 1998: Chapters 1–3.

� Sipser, Introduction to the Theory of Computation,
1997: Chapters 1 – 2.

NP Completeness

� Garey and Johnson, Computers and Intractability, 1979.

Descriptive Complexity

� Immerman, Descriptive Complexity, 1999.
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Syllabus will be up soon on the course web site:

�
http://www.cs.umass.edu/ barring/cs601

There is a pointer there to the Spring 2002 web site, and
the syllabus there will be close to what we do here.

Rough guide:

� Formal Languages and Computability (9 lectures)
� Propositional and First-Order Logic (7 lectures)
� Complexity Theory (11 lectures)
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CMPSCI 601: Review of Regular Sets Lecture 1

Definition: An alphabet is a non-empty finite set, e.g.,� � �������
	
, � � ���
��������	

, etc.

Definition: A string over an alphabet
�

is a finite
sequence of zero or more symbols from

�
. The unique

string with zero symbols is called � . The set of all strings
over

�
is called

���
.

Definition: A language over
�

is any subset of
� �

. The
decision problem for a language � is to input a string �
and determine whether � � � .

Definition: The set of regular expressions � � ��� over
alphabet

�
is the smallest set of strings such that:

1. if
� � �

then
� � � � ���

2. ��� R � ���
3. � � R � ���
4. if � �! � � � ��� then so are the following:

(a) �"�$#  %�
(b) �&�('  %�
(c) �"�!) �
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Examples:

� ��� � � ) � � � ����� � 	 �
� ��� � � � � # � � ' � � # � � � ) � � � ���
� � 	 �
� ��� � � ) � � � ) �!� ) � ) � � � ���
� ����� 	 �

Meanings:

� � � � ) � � � � ������������� � ����� ��	�	�	 	 � ����
 �
� � N
	

� � � � � # � � � ) � � � � � ���
� �
	 ) ��� � ��� � ��� ����� � 	
� � � � ) � � � ) �!� ) � ) � � � � � ���
��� 	 ) � � � � � � �
� ��� ����� � 	

Recall the meaning of Kleene star, for any set, � ,

� ) � � �

 �"! � 


� � ! # � � # � � # #�#�#
� � � 	 # � # �%$'& �($ �)& � � 	 # #*#�#
� �+$ � $ � 	�	�	)$-, �(. � N / $ � ��	�	�	 �)$-, � � 	
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Meaning of a Regular Expression:

1. if
� � �

then
� � � � ��� ; � � � � � � � 	

2. ��� R � ��� ; � �"� � � � � 	
3. � � R � ��� ; � � � � � �
4. if � �! � � � ��� then so are �"� #  %�

, �"�('  %� , �"� ) � :
� �"�(#  %� � � �"� � # � �  �
� �"� '  %� � � �"� � � �  %� � ����� ��� � � �"� � ��� � � �  � 	

� �"� ) � � � � �&� � � )

Definition 1.1 � � � ) is regular iff

��� � � � � ��� � � � � � �&� � �

In other words, a set, � , is regular iff there exists a regular
expression that denotes it.
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Definition: A deterministic finite automaton (DFA)
is a tuple,

� � ��� � � ������� ��� �
� � is a finite set of states,
�
�

is a finite alphabet,
�

� 	 � 
 � � � is the transition function,
�

� � � is the start state, and
�

� � � is the set of final or accept states.
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� � � � � � � � 	 �����
��� 	 � � � ��� � � � 	 �
� � � ����� � � ��� ����� ����� � � �	� � � � �
��� � ����� � � � ����� � � �	� �����!	

a
s q

b

b

a

� � � � � � � � � �
�

� � � � � � � � � � � � � � ���
	 ) � � � � � � � � ��� ����� � 	

� � � � � � ) � �!� ) � � ) � ) �
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Definition: A nondeterministic finite automaton
(NFA) is a tuple,

� � ��� � � ��� � � ��� �
� � is a finite set of states,
�
�

is a finite alphabet,
�
� 	 ��� 
 � � # � � 	 � � � � � �

is the transition function,
�

� � � is the start state, and
�

� � � is the set of final or accept states.

� � � � � � � � ���� � � � � 	

� �	� � �
power set of � � � � � � � � 	
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� , � � � � ! ��	�	�	 � � ,�� � 	 � ����� �
	 ��� , � � ! ��� � ,�� � 	 �� , � ����� � ! ��� � � � � ! 	 � ����� � ! ��� � � � � ! � � � 	 � ��	�	�	 ����� � , ��� � � � � ,�� � 	 �!	

0,1
0 1 2 3

0,1

1 0,1 0,1 0,1
n+1

[You will show in HW 1 that to accept � � � , �
, a DFA

would need �
,�� � states.]

11



Proposition 1.2 Every NFA
�

can be translated into an
NFA wo � -transitions

� �
s.t. � � � � � � � � � �

Proof: Given
� � ��� � � ��� � � ! ��� �

, let
� � � ��� � � ��� � � � ! ��� � �

where

� � � � � � � � ��� � ��� � ��� � � � �� � �� � � �� � 	
F
� � � � � ��� � � � � � � �� � 	

ε

ε

a

a b

a a

b

b

b

b

a

a a

b

b

b

ba

a

a

b

0 0

1 1 2

3 4

2

3 4

� � � �

12



Notation: For a DFA,
� � ��� � � � � ��� ��� �

, let
� ) � � � � �

be the state that
�

will be in after reading string � , when
started in � ,

� ) � � � � � � �

� ) � � � � � �
� � � � ) � � � � ����� �

� � � � � � � � � ) � � � � � � � 	

For an NFA without � transitions,
� � ��� � � ��� ��� ��� �

,
let

� ) � � � � � be the set of states that
�

can be in after
reading string � , when started in � ,

� ) � � � � � 	 � � � 	
� ) � � � � � � 	 � �

����� ������	�

�
� � � ��� �

� � � � � � � � � ) � � � � ��� � �� � 	
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Proposition 1.3 For every NFA,
�

, with
.

states, there
is a DFA,

�
, with at most �

,
states s.t. � � � � � � � � �

.

Proof: Let
� � ��� � � � � � � ! ��� �

. By Proposition 1.2
may assume that

�
has no � transitions.

Let
� � � � ��� ��� � ����� � � ! 	 ��� � �

� �	� ��� � � �
�����

� � � � � �
� � � � � � � � � � � �� � 	

1

{a} {a,b} {a,c}

1 1

0

10

0

a b c

0, 1

0
N

D
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Claim: For all � � � ) ,
� ) � � � ! 	 � � � � � ) � � ! � � �

By induction on
� � �

:� � � � �
:
� ) � � � ! 	 � � � � � � ! 	 � � ) � � ! � � �� � � � � � �

: � � � �
.

Inductively,
� ) � � � ! 	 � � � � � ) � � ! � � �

� ) � � � ! 	 � � � � � � � � ) � � � ! 	 ��� � ��� �
� �

����� � ��� ���	��	�
 �
� � � ��� �

� �
����� � ����� 	

 �

� � � ��� �
� � ) � � ���%� �

Therefore, � � � � � � � � �
.
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Theorem 1.4 (Kleene’s Th) Let � � � ) be any lan-
guage. Then the following are equivalent:

1. � � � � � �
, for some DFA

�
.

2. � � � � � �
, for some NFA

�
wo � transitions

3. � � � � � �
, for some NFA

�
.

4. � � � �"� � , for some regular expression � .
5. � is regular.

Proof: Obvious that
� � � � �

.
� � � by Prop. 1.2.

� � �
by Prop. 1.3 (subset construction).

� � �
by def of regular

� � �
: We show by induction on the number of symbols

in the regular expression � , that there is an NFA
�

with� �"� � � � � � �
:

e = ε /e = e = a

a

0
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L(N) = L(N  ) + L(N )1 2 1 2L(N) = L(N  ) L(N )

ε

N1
ε

L(N) = (L(N  ))1
*

ε

ε

N1

N2

N1

N2

ε

Union Concatenation

Kleene Star
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� � �
: Let

� � � ������	�	�	 � . 	 � � ��� � ����� �
,
� � �  � ��	�	�	 �  � 	

� �
�� � � � ��� � � ) � � � � � / no intermediate state
� � �
	

� !
�� � ��� ��� � � � � ��� � 	 # � � �(� � � 	

� � � �
�� � � �
�� # � �
 � � � �&� �
� � � � � � � ) � �

� � � 	 �

� � �
,
���
	 # #�#�# # �

,
���
�

� �"� � � � � � �

i j
k

i j

i k+1 k+1 j

k

k+1
k

k+1 k+1
k

L

L

L

L
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