CMPSCI601: Introduction Lecture 1

In-depth introduction to main models, concepts of theory
of computation:

e Computability: what can be computed in principle
e Logic: how can we express our requirements
e Complexity: what can be computed in practice

Concrete

Problem - —

Mathematical

Model

Formal Models of Computation:

e Finite-state

e Stacks = CFL

e Turing Machine
e Logical Formula

CMSPSCI 601: Requirements Lecture 1

Texts: available at Jeffery Amherst College Store

[P]: Christos Papadimitriou, Computational Complex-
Ity

[BE:] Jon Barwise and John Etchemendy, Language,
Proof, and Logic

Prerequisites: Mathematical maturity: reason abstractly,
understand and write proofs. CMPSCI 250 needed,;
CMPSCI 311, 401 helpful. Today’s material is a good
taste of the sort of stuff we will do.

Work:

e eight problem sets (35% of grade)
e midterm (30% of grade)
e final (35% of grade)

Cooperation: Students should talk to each other and
help each other; but write up solutions on your own,
In your own words. Sharing or copying a solution
could result in failure. If a significant part of one
of your solutions Is due to someone else, or some-
thing you’ve read then you must acknowledge your
source!

CMSPCI 601 On Reserve in Dubois Library Lecture 1

Mathematical Sophistication

e How to Read and Do Proofs, Second Edition by Daniel
Solow, 1990, John Wiley and Sons.

Review of Regular and Context-Free Languages

e Hopcroft, Motwani, and Jeffrey D. Ullman, Introduc-
tion to Automata Theory, Languages, and Computa-
tion, 2001: Chapters 1-6.

e Lewis and Papadimitriou, Elements of the Theory of
Computation, 1998: Chapters 1-3.

e Sipser, Introduction to the Theory of Computation,
1997: Chapters 1 — 2.

NP Completeness

e Garey and Johnson, Computersand Intractability, 1979.

Descriptive Complexity

e Immerman, Descriptive Complexity, 1999.

3

Syllabus will be up soon on the course web site:
® http://wwv. cs. unass. edu/ barring/cs601

There Is a pointer there to the Spring 2002 web site, and
the syllabus there will be close to what we do here.

Rough guide:

e Formal Languages and Computability (9 lectures)
e Propositional and First-Order Logic (7 lectures)

e Complexity Theory (11 lectures)

CMPSCI 601 Review of Regular Sets Lecture 1

Definition: An alphabet is a non-empty finite set, e.g.,
> =40,1},T = {a,b, c}, etc.

Definition: A string over an alphabet X is a finite
sequence of zero or more symbols from . The unique
string with zero symbols is called e. The set of all strings
over Y is called X*.

Definition: A language over X is any subset of X*. The
decision problem for a language L is to input a string w
and determine whether w € L.

Definition: The set of regular expressions R(X:) over
alphabet > is the smallest set of strings such that:

1.ifa € X thena € R(Y)

2. e e R(Y)

3.0 e R(Y)

4.if e, f € R(X) then so are the following:
(8) (e U f)
(b) (e o f)
(c) (¢*)

Examples:
e c; =0"€ R({0,1})
eco=((aUb)o(aUb))* € R({a,b})
e ¢35 = a*(ba*ba*)* € R({a,b,c})

Meanings:
L(0%) = {¢0,00,0%,0% ...} = {0°]¢e N}
£((an)2*) = {w € {a,b}* | |lw| =0(mod2)}
o Lla*(ba'ba?)t) = {w € {a,b} | #w) =
0 (mod 2)}

Recall the meaning of Kleene star, for any set, A,

A = [A

1=0
= A'uA'u A*U
{e;UAU{zy | z,y e A}U---

= {xlxg...xn | nEN;azl,...,xneA}

Meaning of a Regular Expression:

l.ifa € Xthena € R(Y); L(a) = {a}

2. € R(%); L(€) = 1€}
3.0 e R(X); LO)=10
4.ife, f € R(X) thensoare (eU f), (eo f), (e):

LeU[f) = Le)UL(f)
Lleof) = L(e)L(f) = {uv | u e L(e),ve L(f);
L(e") = (Lle))

Definition 1.1 A C X* is regular iff
(de € R(X))(A = L(e))

In other words, a set, A, is regular iff there exists a regular
expression that denotes it.

Definition: A deterministic finite automaton (DFA)
IS a tuple,

D= (Q,>,6,s,F)

e () Is a finite set of states,

e X Is a finite alphabet,

e) : () x X — (Isthe transition function,
e s € () Is the start state, and

o [’ C () Is the set of final or accept states.

D, = ({57Q}7{aab}751737{3})
01 = {((s,a),s),((s,0),4), ({¢,0),4),({(g, D), 8)}

) e

Ly = L(Dy) = {w € {a,b}” | #y(w) =0(mod?2)}

L, = L(a*(ba*ba*)")

Definition: A nondeterministic finite automaton
(NFA) is a tuple,

N=(Q,%,A,s,F)

e () Is a finite set of states,

e X Is a finite alphabet,

o A:(Qx(XU{e}) = p(Q) is the transition function,
e s € () Is the start state, and

o [’ C () Is the set of final or accept states.

LIN) = {w]|s,qeF)}

w

e(S) = powersetof S = {A]| ACS}

10

Nn — ({qoa .o aQn+1}a {07 1}7 Ana qo, {Qn+1})
An = {({q0,0),{90}); ({90,1), {90, 1 }), - - -, (s 1), {@nt1}) }

1 0,1 0,1 0,1 01
00

0,1

[You will show in HW 1 that to accept £(V,), a DFA
would need 27! states.]

11

Proposition 1.2 Every NFA N can be trandated into an
NFA wo e-transitions N’ sit. L(N) = L(N)

Proof: Given N = (Q, X, A, qo, F), let N' = (Q, %, A', qo, F')
where

A(q,a) = {r | (Els,t)qe—*>si>t€—*>r}
F' = {q| (336F)q6—*>3}

12

Notation: ForaDFA, D = (Q,%,9,s, F), let §*(¢q, w)
be the state that D will be in after reading string w, when
started in g,

0*(g,€) = ¢
6 (q,wa) = §(6*(q,w), a)

L(D)={w | 6" (s,w) € F}

For an NFA without e transitions, N = (Q,>, A, s, F),
let A*(q, w) be the set of states that NV can be in after
reading string w, when started in g,

A*(g,€) = {4}
A*(q,wa) = U Ar,a
@uwa) =y Al

L(N) = {w | A*(s,w)NF # 0}

13

Proposition 1.3 For every NFA, N, with n states, there
iIsaDFA, D, with at most 2" statess.t. £(D) = L(N).

Proof: Let N = (Q,>, A, qo, F'). By Proposition 1.2
may assume that NV has no e transitions.

Let D = (@(Q), 27 57 {QO}7 F,)

6(S,a) = U A(r,a)

resS

Fr={SCQ|SnF+#0}

14

Claim: Forall w € X%,
5*({QO}7 ’UJ) — A*(CIOa ’UJ)

By induction on |w|:
w| =0:0"{q},€) = 10} = A%(qo,¢€)

lw| =k +1: w = ua.

Inductively, 6*({qo},uv) = A*(qo, u)

0*({qo}, ua) = 6(6"({qo}, u), a)

= U A(r,a)
r€5*({QO}7u)

= U A(r,a
reA*(qo,u) ()

= A*(q, ua)

Therefore, £L(D) = L(N).

15

Theorem 1.4 (Kleene’s Th) Let A C >* be any lan-
guage. Then the following are equivalent:

1. A= L(D), for some DFA D.

2. A= L(N), for some NFA N wo ¢ transitions
3. A= L(N), for someNFA N.

4. A = L(e), for someregular expression e.

5. Alisregular.

Proof: Obvious that1 — 2 — 3.

3 — 2 by Prop. 1.2.

2 — 1 by Prop. 1.3 (subset construction).
4 < 5 by def of regular

4 — 3. We show by induction on the number of symbols
In the regular expression ¢, that there is an NFA N with
L(e)=L(N):

e=a e= ¢ e= 0

o0 O <C

16

Union Concatenation

L(N)=L(Nq) +L(Ny L(N) =L(Nyg) L(N,

Ny
%

Kleene Star

L(N) = (L(N)Y . O~

17

34 LetN=({1,...,n},S,AL,F),F={f1,....f}

LY. = {w | j € A*(i,w); no intermediate state # > k}

L ={a|jeAGa)} U {e]i=j}

i

LZ] = L’L] U Lik—l—l(Lk‘-Flk-l-l) Lk"‘laj

k
L k+1 k+1

18

