
CMPSCI 601: Recall From Last Time Lecture 8

Turing Machines:
� � ��� �����
	�����

	 ��� � � � ��� � ��������� � � ��� ��� � � �

Def: A function ! is recursive iff it is computed by a
TM. ! may be total (defined for all inputs) or partial.

Def: A set " is recursive or Turing decidable iff its
characteristic function #%$ is a recursive function.

Recursive is the set of recursive sets.

Def: A set " is recursively enumberable (r.e.) or Turing
acceptable iff its partial characteristic function & $ is a
recursive function.

r.e. is the set of r.e. sets.

Theorem: Recursive = r.e. ' co-r.e.
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CMPSCI 601: Palindromes Lecture 8

Definition 8.1 A string � � ���
is a palindrome iff it is

the same as its reversal, i.e., � � �
�

. �
Examples of palindromes:

� 101
� 1101001011
� ABLE WAS I ERE I SAW ELBA
� AMANAPLANACANALPANAMA

Fact 8.2 The set of PALINDROMES (over a fixed alpha-
bet,

�
) is context-free but not regular.
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Proposition 8.3 The set of PALINDROMES (over a fixed
alphabet,

�
) is a recursive set.

Proof: We must construct a TM that decides PALIN-
DROMES. From here on, we’ll be describing TM’s very
informally. Given the input:

� A B L E E L B A �
We remember the first letter, delete it, move to the last
letter, and either delete it if it matches or return false if it
doesn’t.

We repeat this process on the undeleted part of the string
and return true iff the string becomes empty by deleting
its last letter.

�

Fact 8.4 Time � ����� �
is necessary and sufficient for a one-

tape Turing machine to accept the set, PALINDROMES.

Proof: The procedure above used time � ����� �
(do you see

this?). The lower bound is harder to prove and depends
strongly on the fact that we are working with a one-tape
Turing machine. One way to see the lower bound is to do
problems 2.8.4 and 2.8.5 from [P]. �
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CMPSCI 601: MultiTape Turing Machines Lecture 8

Definition 8.5 A � -tape Turing machine,
� � ��� ����
	�����

�
: finite set of states;

� � �
�

: finite set of symbols;	
:
� � ��� � ��� � ������� � � � � � � � � � � ��� �

�

A multitape TM reads one cell on each tape (the cell un-
der that tape’s head) on each time step. Based on those
cells’ contents and its state, it writes into the current cell
on each tape and moves up to one cell left or right on each
tape.

Theorem 8.6 For any � , any � -tape TM may be simu-
lated by a one-tape TM.

Proof: See [P] or [S] for a detailed proof. The idea is to
store the � tapes on a single tape, with the contents either
in series or in parallel. To simulate one step of the � -tape
machine, the one-tape machine must find the contents of
the current cells and then perform the proper actions on
the part of its tape corresponding to each current cell.

�
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Proposition 8.7 PALINDROMES can be accepted in

DTIME � ��� on a 2-tape TM.

Proof: (that PALINDROMES � DTIME � ��� )
� A B L E E L B A � � �

... ... ... ...� A B L E E L B A � � �
� A B L E E L B A � � A �
� A B L E E L B A � � A B �

... ... ... ...� A B L E E L B A � � A B L E E L B A �

... ... ... ...� A B L E E L B A � � A B L E E L B A �
� A B L E E L B A � � A B L E E L B A �

... ... ... ...� A B L E E L B A � � A B L E E L B A �

... ... ... ...� A B L E E L B A � � 1 �

�

5



CMPSCI 601: DTIME and DSPACE Lecture 8

Definition 8.8 A set � � � �
is in DTIME ��� ��� � � iff there

exists a deterministic, multi-tape TM,
�

, and a constant� , such that,

1. � � � ��� � � � � � � � � � � � � � � �
,

and

2. 	 � � � �
,
� � � �

halts within � �
��� � � � � � � �
steps.

�
Why “ � �
�� � � � � � � � �

steps”? If the input is size
�

, we nor-
mally want the running time bound to be � � � ��� � � steps.
But for convenience with functions � where � ��� � might
be less than one, we modify this to � �
��� � ��� � � steps, the
max of � �
� �

and � � � ��� � � .
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Definition 8.9 A set � � � �
is in DSPACE � � � � � � iff

there exists a deterministic, multi-tape TM,
�

, and a
constant � , such that,

1. � � � � � �
, and

2. 	 � � � �
,
� � � �

uses at most � � � � � � � � � � �
work-tape

cells.

(Note: The input tape is read-only and not counted as
space used. Otherwise space bounds below

�
would

rarely be useful. But in the real world we often want
to limit space and work with read-only input. Consider,
for example, a problem where the “input” is the entire
World-Wide Web.) �

Example: We have just shown that PALINDROMES
is in both DTIME � ��� and DSPACE � ��� .
In fact, we’ll show a little later that PALINDROMES �
DSPACE � ����� ��� .
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CMPSCI 601: F(DTIME) and F(DSPACE) Lecture 8

Definition 8.10 ! � � � � � �
is in � �

DTIME ��� ��� � � �
iff there exists a deterministic, multi-tape TM

�
, and a

constant � , such that:

1. ! � � ��� �
, i.e., 	 � � ! � � � � � � � �

;

2. 	 � � � �
,
� � � �

halts within � �
��� � � � � � � �
steps;

3.
� ! � � � ��� � � �����
	��

, i.e., ! is polynomially bounded.

�
The last condition is a technical one as functions that re-
turn enormously bigger strings are convenient to rule out.
Note that if ! ��� � is itself

�����	��
, as is usual for practically

feasible algorithms, the last condition follows automati-
cally.

8



Definition 8.11 ! ��� � � � �
is in � �

DSPACE � � ��� � � �
iff there exists a deterministic, multi-tape TM

�
, and a

constant � , such that:

1. ! � � ��� �
, i.e., 	 � � ! � � � � � � � �

;

2. 	 � � � �
,
� � � �

uses at most � � � � � � � � � � �
work-tape

cells;

3.
� ! � � � ��� � � � ���
	��

, i.e., ! is polynomially bounded.

(Recall that the input tape is read-only and that the output
tape is write-only, and that neither is counted against the
space bound.) �

Examples: The function Plus is in � �
DTIME � ��� � and

� �
DSPACE

� � �
. As you’ll prove on the revised HW#2,

the function Times is in � �
DTIME � � � � � and (for extra

credit) � �
DSPACE � ��� � ��� � .
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CMPSCI 601: L, P, and PSPACE Lecture 8

We are now ready to define three important complexity
classes:

L
�

DSPACE � � ��� ���

P
�

DTIME � � ���
	�� � � � �
��� 	 DTIME � � � �

PSPACE
�

DSPACE � � � ��	�� � � � �
��� 	 DSPACE � � � �

Theorem 8.12 P is also the set of languages decidable in� � ��	��
time on a one-tape TM.

Proof: P clearly contains all these languages. For the
other direction, we look more closely at the simulation
of a � -tape TM by a one-tape TM. Simulating one step
of the former requires two passes over the entire tape of
the latter, which can be done in � � � ��� � � � � � � � � � � time.
So � � � ��� � � � time on the one-tape TM suffices to simulate
� � � ��� � � time on the � -tape TM. �
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Theorem 8.13 For any functions � � � ��� � �� ��� ��� ����� �
,

we have

DTIME � � ��� � � � DSPACE ��� ��� � �
DSPACE � � ��� � � � DTIME ��� ����� ��� �
� �

Proof: The first statement is obvious.

To prove the second statement, let
�

be a DSPACE � � ��� � �
TM, let � � � �

, and let
� � � � �

.�
has � tapes and when it runs on � it uses at most � � � � �

work-tape cells. During this computation
�

thus has at
most

� � � � ��� � � � � � � � � � � � � � �
	 � ��� � � � �� � ��� �

possible configurations.

Thus, after � �  � ��� � steps,
� � � �

must be in an infinite loop.

So either it halts before using that many steps, or it never
halts at all. And for it not to halt is a contradiction, as

�
is supposed to halt on all inputs. �

Corollary 8.14 L � P � PSPACE
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CMPSCI 601: PALINDROMES � L Lecture 8

� A B L E E L B A � � �
... ... ... ...� A B L E E L B A � � 1 � 8

... ... ... ...� A B L E E L B A � � 2 � 7

... ... ... ...� A B L E E L B A � � 3 � 6

... ... ... ...� A B L E E L B A � � 4 � 5

... ... ... ...� A B L E E L B A � � 1 �

The machine must keep track of and manipulate two point-
ers into the input. Since each of these pointers holds a
number from

�
through

�
, where

�
is the length of the in-

put, the worktape space used for each pointer is � � ��� � � �
cells, and the total space is � � ����� � �

.
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CMPSCI 601: DTIME versus RAMTIME Lecture 8

RAM = Random Access Machine

Memory: � ��� � 	 � � ��� ��� � � � � � � � �

� = program counter; � � = accumulator

Instruction Operand Semantics
READ

� � � � � � � � � � � � �
	 � ���� � � �
STORE

� � � � � ��	 � ���� � � � � �
ADD

� � � � � � � � � � � � � � � �
	 � ���� � � �
SUB

� � � � � � � � � � � � � � � �
	 � ���� � � �
HALF ��� � � � ����� ���
JUMP j � � � �
JPOS j if

� � ��� � � then � � � �
JZERO j if

� � � � � � then � � � �
HALT � � � �

This is a reasonable model of an actual assembly-language
program (an extreme version of a RISC).
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Theorem 8.15

DTIME ��� ��� � � � RAM-TIME ��� ��� � � � DTIME � � � ��� � � � �

Proof: The first inclusion is obvious. For the other, we
must simulate the RAM with a TM. First, we memorize
the program in the TM’s finite control.

Store all registers on one tape:
� 1 1 , 0 : 1 0 1 , 1 0 1 : 0 , 1 0 1 1 : 1 0 �

� � � ��� � 	 	
Store workspace for calculations on second tape:
� 1 0 0 , 1 0 1 1 �

� � A

Use the third tape for moving over sections of the first
tape.
� 0 : 1 0 1 , 1 0 1 : 0 , 1 0 1 1 : 1 0 �

� � ��� � 	 	
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Each register contains at most
� � � ��� � bits, because our

instructions allow us to at most double the largest number
each time.

The total number of tape cells used is at most

� � ��� � � � � � ��� � � � � � � � ��� � � � �

Each step takes at most � � � � ��� � � � � steps to simulate. �
What if we added a MULT instruction to our RAM? Then
we could square the largest number each time, generating
numbers of � � ��� ��� � �

bits in time � � � � . These numbers can’t
be processed in polynomial time by a TM!

But real computers have a fixed word size rather than
registers that can hold arbitrary integers. To model this,
the algorithms books use a log-cost RAM as their basic
model, so that touching a register with a number that is

�

bits costs you � � � �
time instead of � �
� �

. The distinction
between ordinary (unit-cost) and log-cost RAMs is only
important when dealing with very large numbers.
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CMPSCI 601: Nondeterministic TM Lecture 8

A nondeterministic Turing Machine may choose one of
two possible moves on each step. Here is an example:

guess.tm
� � �

0
1
� � � � � � � � � � � � � � � � � � � � ��� �
� � � � � �

comment
�

or
�

guess 0 or 1 the rest

� Write down an arbitrary string
� � � � � � � � , the guess.

� Proceed with the rest of the computation, using
�

if
desired.

� As with an NFA, we “accept” the input iff there exists
a computation path leading to acceptance. With this
machine this is true iff there exists some guess string
that leads to acceptance.
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guess.tm
� � �

0
1
� � � � � � � � � � � � � � � � � � � � ��� �
� � � � � �

comment
�

or
�

guess 0 or 1 the rest

� � �� � �
� � �� � 0 �
� � 0 �� � 0 1 �
� � 0 1 �� � 0 1 1 �
� � 0 1 1 �
... ... ... ...� � 0 1 1 0

� � �
1 �

� � 0 1 1 0
� � �

1 �
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Definition 8.16 The set accepted by a NTM, �
� � �

�
� �

� � � � � �
some run of �

� � �
halts with output “1”

�

We define the time taken by � on � � � �
�

�
to be the

number of steps in the shortest computation of �
� � �

that
accepts. �

2s

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

t(n)

t(n)
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CMPSCI 601: NTIME and NP Lecture 8

NTIME ��� ��� � � �
probs. accepted by NTMs in time � � � ��� � �

NP
�

NTIME � � � ��	�� � � � �
��� 	 NTIME � � � �

Theorem 8.17 For any function � ��� � ,
DTIME � � ��� � � � NTIME ��� ��� � � � DSPACE � � ��� � �

Proof: The first inclusion is obvious. For the second,
note that in space � � � � � � � we can simulate all computa-
tions of length � � � ��� � � , so we will find the shortest ac-
cepting one if it exists. �

Recall: DSPACE � � � � � � � DTIME ��� ����� ��� �
� �

Corollary 8.18

L � P � NP � PSPACE
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So we can simulate NTM’s by DTM’s, at the cost of an
exponential increase in the running time. It may be pos-
sible to improve this simulation, though no essentially
better one is known. If the cost could be reduced to poly-
nomial, we would have that P

�
NP.

There is probably such a quantitative difference between
the power of NTM’s and DTM’s. But note that qualita-
tively there is no difference. If � is the language of some
NTM � , it must also be r.e. because there is a DTM that
searches through all computations of � on � , first of one
step, then of two steps, and so on. If � � � , � will
eventually find an accepting computation. If not, it will
search forever.

What about an NTM-based definition of “recursive” or
“Turing-decidable” sets? This is less clear because NTM’s
don’t decide – they just have a range of possible actions.
But one can define “a function computed by an NTM” in
a reasonable way, and this leads to the same classes of
partial recursive functions, total recursive functions, and
recursive sets.

20



co-r.e.
complete

Arithmetic Hierarchy r.e.

completer.e.co-r.e.

Polynomial-Time Hierarchy NP
complete

co-NP
complete

co-NP NP 

NP 

U

co-NP

P

NC 2

log(CFL)

NC

NC

SAC

ThC

"truly feasible"

Regular

NSPACE[log n]

Logarithmic-Time Hierarchy AC

DSPACE[log n]

PSPACE

EXPTIME

Primitive Recursive

Recursive

1

0

1

0
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