
CMPSCI 601: Recall From Last Time Lecture 4

Kleene’s Theorem: Let
� � ���

be any language.
Then the following are equivalent:

1.
� � � �	� 


, for some DFA
�

.

2.
� � � �	� 


, for some NFA
�

without � transitions

3.
� � � �	� 


, for some NFA
�

.

4.
� � � �	
�


, for some regular expression


.

5.
�

is regular.

Myhill-Nerode Theorem: The language
�

is regular
iff � � has a finite number of equivalence classes. Fur-
thermore, this number of equivalence classes is equal to
the number of states in the minimum-state DFA that ac-
cepts

�
.
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CMPSCI 601: Regular Language Closure Lecture 4

Closure Theorem for Regular Sets: Let
� ��� � � �

be
regular languages and let � � � � � � �

and � � � � � � �

be homomorphisms. Then the following languages are
regular:

1.
� � �

2.
� �

3.
� � � � �
	 � 


4.
� � �

5. � � � 


6. �
��� � � 


A homomorphism of strings is a function � such that for
any strings � and � , � � ��� 
 � � � � 
 � � � 
 . The set ���
� � � 


is
defined as ��� ��� � � 

� � �

.
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Proofs of Closure Properties:

Because we have so many equivalent models for the class
of regular languages, we can pick the one that makes each
proof easiest:

1. Regular Expressions: union, concatenation, star

2. DFA: complement, hence intersection

3. (product of DFA’s gives intersection directly)

4. Forward homomorphism: substitute into regexp or
general NFA

5. Inverse homomorphism: simulate on DFA

6. Reversal: easy by regular expressions, but also doable
with NFA’s (exercise)
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Let � � ��� � � �
be a homomorphism.

If � is a regular expression over
�

, we can compute a
regular expression � � � 


by induction on the definition of
regular expressions. Then we can prove by induction that
� � � � � 
 
 � � � � � � 
 


.

If � is a DFA with alphabet
�

and
� � � 
 � �

, we can
make a DFA for � ��� �	� 


as follows. States, start, and
final states are the same as � . For every letter � in

�
and

every state � , define � � � � � 
 to be � �� � � � � � � 
 
 .
Then for any 	 � � �

, � � � � � 	 
 � � �� � � � � � 	 
 

, and

� � � ��
 � 	 

� � 


� �� � ��
 � � � 	 
 

� � 


� � 	 

� � 


	 � � ��� � � 
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CMPSCI 601: Review of CFL’s Lecture 4

Definition: A context-free grammar (CFG) is a 4-
tuple � � ��� � � � � ��� 


,

� � �
variables = nonterminals,

� � �
terminals,

� � �
rules = productions, � � � � ��� � � 
 �

,
� � � �

,
� � � � � � are all finite.
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� �
� � � � � � � � ��� � � � �

� � 

� �

� ��� � � � ����� � � � � � � � � � � � � ���	� � �

� �
�� � � ����
 � �� � � ����
 � � �����

 � � ���� � � ����
 � � �����

 � � � ��������
 � � � �����

� � � �

 � � 	 � � � ����� � � � ����� 	

�
� � ��� � � ��� �

N
�

� � � 
 � � 	 � � � � � �� � 	
�
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� �
�

� � � ��� � � ��� ��� � � ��� � � � � � 
 �	� ��
 ��� ��
 ���
��� ����������� ��� � � � �
� � 


� �
�

� � � � � ��� � � � ��
 ���
� � � 
 � � � � � � ���	�����	����� ���
� � � � 
�� � � � � � � �!� �
� � � �

Parse Tree:

*

V

T F

F

C

D

( E )

E + T

E + T

T F

F

V

L D

x 1(*3 + y 1 + z 1 )

F

V

L D

T

E

L D

7



Pumping Lemma for Regular Sets: Let
� �

��� � � � � � ��
 � � 

be a DFA. Let

� � ��� �
. Let 	 � � �	� 


s.t.
� 	 ��� �

. Then � � ��
 ��� � � �
s.t. the following all

hold:
� � 
 � � 	
� ��� 
 ��� �
� ��
 ��� �

, and
� �
	�� � � 
 � 
�
�� � � � � 


Proof: Let 	 � � � � 

s.t.

� 	 ��� �
.

	 � 	 � 	 � 	�� ����� 	 � �
� 
 � � � � � � ����� � � ��� � �

By the Pigeonhole Principle,
� ����� � 
 ��� � ���

	 � �� ��� �	 �
����� 	 �

�� � � �	 �"! �
����� 	 �

#� ��� �	 �$! �
����� 	 � ���
 � � � � ��%

� � � � � ��
 
�� � � . Thus,
� 
&
�� � � �	� 


for all
� �

N. '
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We showed:
� � � ��� � � ��� �

N
�

is not regular.

Proof: Suppose that
�

were regular, accepted by a DFA
with

�
states. Let 	 � � � � � .

By the pumping lemma, 	 � � � � � � � 
 �
where

� ��� 
 ��� �
� ��
 ��� �

, and
� �
	�� �

N

 � 
�
�� � �

Since
� � ��� 
 ��� �

,

 � � � ��� � � � �

.

Thus
� 
 
 � � � � � � � � � �

.

But, � � � � � � �� �
.
 �

Therefore
�

is not regular. '
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CFL Pumping Lemma: Let
�

be a CFL. Then there is
a constant

�
, depending only on

�
, such that if

� � �
and� � � � �

, then there exist strings � � � � 	 � � ��

such that:

� � � ��� 	 � 

, and

� � � � � � �
, and

� � � 	 � ��� �
, and

� for all
� �

N, ��� 
 	 � 
 
 � �
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Proof: Let � � ��� � � � � ��� 

be a CFG with

� � � 
�� �
.

Let
�

be so large that for
� � � � �

s.t.
� �� � �

for some� � �
, the parse tree for

�
has height

� � � ��� �
.

Let
� � �

,
��� � � �

.

The parse tree for
�

has height greater than
� � ��� �

.

Thus, some path repeats a nonterminal,
�

.

y

S

N

N

u v w x

� � ��� 	 � 
�� � 	�� �
N

 � ��� 
 	 � 
 
 � � 
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Prop: � � � � � ��� � � ��� � � ��� �
N
�

is not a CFL.

Proof: Suppose � were a CFL.

Let
�

be the constant of the CFL pumping lemma.

Let
� � � � � � � � � � .

By the CFL pumping lemma,
� � ��� 	 � 


, and

1.
� � � � � �

,

2.
� � 	 � ��� �

, and

3. for all
� �

N, ��� 
 	 � 
 
 � �
Since

� � 	 � ��� �
, � 	 � � � � � � or � 	 � � � � � � .

If either � or
�

contains both � ’s, and
�
’s, then ��� � 	 � � 


is not in � .

Suppose that � �
contains at least one � . Then, ��� � 	 � � 


is not in � , because it has more � ’s in one group than the
other.

Suppose that � �
contains at least one

�
. Then, ��� � 	 � � 


is not in � , because it has more
�
’s in one group than the

other.

Thus, ��� � 	 � � 

is not in � .
 �

Thus P is not a CFL. '
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Prop:
� � � � � � � � � � � ��� � � � �

N
�

is not a CFL.

Proof:

The argument is almost identical. We let
� � � � � ��� �

where
�

is larger than the constant given by the CFL
Pumping Lemma. So

� � ��� 	 � 

with

� � 	 � � � �
,� � 	 � � � �

, and ��� � 	 � � 
 in
� � � � � �

for all � . Again,
neither � nor

�
can contain letters of two different types,

or ��� � 	 � � 

is not in � � ��� � � . But then ��� � 	 � � 


cannot
contain equal numbers of � ’s,

�
’s, and � ’s, as only one or

two types of letter have been added.

'

13



Any CFL satisfies the conclusion of the CFL Pumping
Lemma, but it is not true that any non-CFL must fail to
satisfy it. There are other tools that can show a language
to be a non-CFL. These include stronger forms of the
Pumping Lemma and more closure properties.

Let
� � � � �

be the set of strings in
� � � � �

�

 �

that
have an equal number of � ’s,

�
’s, and � ’s. You can use

the CFL Pumping Lemma on this with the right choice
of

�
, but far easier is using the fact that the intersection

of
� � � � �

with � � � � � � is the language
� � � � � �

.

If
�

is a CFL and � a regular language, then
� � � must

be regular. Proving this, however, requires a different
characterization of the CFL’s.

14



CMPSCI 601: Pushdown Automata (PDA’s) Lecture 4

Definition: A pushdown automaton (PDA) is a 7-
tuple, � � ��� � � � � � � � � 
 ��� 
 � � 


� � �
finite set of states,

� � �
input alphabet,

� � �
stack alphabet,

� � � ��� � � � � � � 
 � � � � � � 

finite set of transitions,

� � 
 � �
start state,

� � 
 � �
initial stack symbol,

� � � �
final states.

PDA
�

NFA
�

stack

� � � 
 � � 	 � � � � � ��
 ��� 
 
 ��
�

� � ��� 
�� � � � ��� � � � �
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� �
� � � � � � ��� � � � � ����� � � � � � ��� 
 � � � �

� � � � 
 � � � � 

�
�
� ��� � � � � � � 
 � � � � � 
 � � � � � ��� � � 
�� � � ��� 
 � � � � � � � � � 
�� � � � � 
 �

� � � � � � � 
 � � � �
�

 � � � � � � ��� � 
 � � � �

�

 � � � � � � � � � 
 
 � ��� � � 
 � �

0r
ε Z   /

a/A aA/

b/B bB/

q s

� � � �

 � � 	 	 � � 	 � � � ��� � � �

16



Theorem 4.1 Let
� � � �

be any language. Then the
following are equivalent:

1.
� � � � � 


, for some CFG � .

2.
� � � � � 


, for some PDA � .

3.
�

is a context-free language.

Proof: We give only a sketch here – there are detailed
proofs in [HMU], [LP], and [S].

To prove (1) implies (2), we can build a “bottom-up parser”
or “top-down” parser, similar to those used in real-world
compilers except that the latter are deterministic.

17



The top-down parser is a PDA that:

� begins by pushing “
���

” onto its stack
� may pop a terminal from the stack if can at the same

time read a matching input letter,
� may execute a rule

� � 	 by popping
�

and pushing
	

�
,

� ends by popping the
�

when done with the input

The bottom-up parser, somewhat similarly:

� pushes “
�
” onto its stack,

� may transfer a terminal from the input to the stack,
� may execute

� � 	 by popping 	 and pushing
�

,
� ends by popping

���
when done
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The proof that the language of any PDA is a CFL (that
(2) implies (1)) is of less practical interest.

Given states � and � , let
� ��� be the set of strings that could

take the PDA from state � with empty stack to state � with
empty stack.

If we can define rules making each
� ��� a CFL we win, be-

cause the language of the PDA is the union of
� � % for all

final states
�

, where
�

is the start state. (So our grammar
has a rule

� � � � % for each
�

.)

We have all rules of the form
����� � ���

�
�
�
�
, and a rule����� � � � �

� �
whenever moves of the PDA warrant it.

Here I am skipping some assumptions on the PDA, and
the (nontrivial) proof that any accepting run of the PDA
corresponds to a valid derivation in our grammar. '
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