Kleene's Theorem: Let $A \subseteq \Sigma^{\star}$ be any language. Then the following are equivalent:

1. $A=\mathcal{L}(D)$, for some DFA D.
2. $A=\mathcal{L}(N)$, for some NFA N without ϵ transitions
3. $A=\mathcal{L}(N)$, for some NFA N.
4. $A=\mathcal{L}(e)$, for some regular expression e.
5. A is regular.

Myhill-Nerode Theorem: The language A is regular iff \sim_{A} has a finite number of equivalence classes. Furthermore, this number of equivalence classes is equal to the number of states in the minimum-state DFA that accepts A.

CMPSCI 601: Regular Language Closure

Closure Theorem for Regular Sets: Let $A, B \subseteq \Sigma^{\star}$ be regular languages and let $h: \Sigma^{\star} \rightarrow \Gamma^{\star}$ and $g: \Gamma^{\star} \rightarrow \Sigma^{\star}$ be homomorphisms. Then the following languages are regular:

1. $A \cup B$
2. $A B$
3. $\bar{A}=\left(\Sigma^{\star}-A\right)$
4. $A \cap B$
5. $h(A)$
6. $g^{-1}(A)$

A homomorphism of strings is a function g such that for any strings u and $v, g(u v)=g(u) g(v)$. The set $g^{-1}(A)$ is defined as $\{u: g(u) \in A\}$.

Proofs of Closure Properties:

Because we have so many equivalent models for the class of regular languages, we can pick the one that makes each proof easiest:

1. Regular Expressions: union, concatenation, star
2. DFA: complement, hence intersection
3. (product of DFA's gives intersection directly)
4. Forward homomorphism: substitute into regexp or general NFA
5. Inverse homomorphism: simulate on DFA
6. Reversal: easy by regular expressions, but also doable with NFA's (exercise)

Let $h: \Sigma^{*} \rightarrow \Delta^{*}$ be a homomorphism.
If R is a regular expression over Σ, we can compute a regular expression $h(R)$ by induction on the definition of regular expressions. Then we can prove by induction that $h(\mathcal{L}(R))=\mathcal{L}(h(R))$.

If M is a DFA with alphabet Δ and $\mathcal{L}(M)=A$, we can make a DFA for $h^{-1}(A)$ as follows. States, start, and final states are the same as M. For every letter a in Σ and every state q, define $\delta(q, a)$ to be $\delta_{M}^{*}(q, h(a))$.

Then for any $w \in \Sigma^{*}, \delta^{*}(q, w)=\delta_{M}^{*}(q, h(w))$, and

$$
\begin{aligned}
& \delta^{*}\left(q_{0}, w\right) \in F \leftrightarrow \\
& \delta_{M}^{*}\left(q_{0}, h(w)\right) \in F \leftrightarrow \\
& h(w) \in A \leftrightarrow \\
& w \in h^{-1}(A)
\end{aligned}
$$

Definition: A context-free grammar (CFG) is a 4tuple $G=(V, \Sigma, R, S)$,

- $V=$ variables $=$ nonterminals,
- $\Sigma=$ terminals,
- $R=$ rules $=$ productions, $R \subseteq V \times(V \cup \Sigma)^{\star}$,
- $S \in V$,
- V, Σ, R are all finite.

$$
\begin{aligned}
& G_{1}=\left(\{S\},\{a, b\}, R_{1}, S\right) \\
& R_{1}=\{\langle S, a S b\rangle,\langle S, \epsilon\rangle\}=\{S \rightarrow a S b \mid \epsilon\}
\end{aligned}
$$

$S \rightarrow \epsilon$
$S \rightarrow a S b \Rightarrow a b$
$S \rightarrow a S b \Rightarrow a a S b b \Rightarrow a a b b$
$S \rightarrow a S b \Rightarrow a a S b b \Rightarrow a a a S b b b \Rightarrow a a a b b b$

$$
\begin{aligned}
\mathcal{L}\left(G_{1}\right) & =\left\{w \in\{a, b\}^{\star} \mid S_{\overrightarrow{G_{1}}}^{\star} w\right\} \\
& =\left\{a^{n} b^{n} \mid n \in \mathbf{N}\right\} \\
\mathcal{L}(G) & =\left\{w \in \Sigma^{\star} \mid{\underset{G}{\vec{G}}}_{\star}^{S_{1}} w\right\}
\end{aligned}
$$

$$
G_{2}=
$$

$\left(\{E, T, F, V, L, D, C\},\{(),,+, \star, x, y, z, 0,1, \ldots, 9\}, R_{2}, E\right)$

$$
\begin{array}{lll}
E \rightarrow E+T \mid T & L \rightarrow x|y| z \\
R_{2}= & D \rightarrow 0|1| 2|\cdots| 9 \\
T \rightarrow T \star F \mid F & C \rightarrow D \mid C D
\end{array}
$$

Parse Tree:

Pumping Lemma for Regular Sets: Let $D=$ $\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA. Let $n=|Q|$. Let $w \in \mathcal{L}(D)$ s.t. $|w| \geq n$. Then $\exists x, y, z \in \Sigma^{\star}$ s.t. the following all hold:

- $x y z=w$
- $|x y| \leq n$
- $|y|>0$, and
- $(\forall k \geq 0) x y^{k} z \in \mathcal{L}(D)$

Proof: Let $w \in \mathcal{L}(D)$ s.t. $|w| \geq n$.

$$
w=\quad q_{0}{ }^{w_{1}}{ }_{q_{1}} w_{2}{ }_{q_{2}} w_{3}{ }_{q_{3}} \cdots q_{n-1} \begin{aligned}
& \cdots \\
& q_{n}
\end{aligned}
$$

By the Pigeonhole Principle, $(\exists i<j) q_{i}=q_{j}$

$$
w=q_{q_{0}} \overbrace{w_{1} \ldots w_{i}}^{x} \overbrace{q_{i}} \overbrace{w_{i+1} \ldots w_{j}}^{y} \overbrace{q_{i}} \overbrace{w_{j+1} \ldots w_{n} u}^{z} q_{f}
$$

$\delta^{\star}\left(q_{i}, y\right)=q_{i}$. Thus, $x y^{k} z \in \mathcal{L}(D)$ for all $k \in \mathbf{N}$.

We showed: $E=\left\{a^{r} b^{r} \mid r \in \mathbf{N}\right\}$ is not regular.
Proof: Suppose that E were regular, accepted by a DFA with n states. Let $w=a^{n} b^{n}$.
By the pumping lemma, $w=a^{n} b^{n}=x y z$ where

- $|x y| \leq n$
- $|y|>0$, and
- $(\forall k \in \mathbf{N}) x y^{k} z \in E$

Since $0<|x y| \leq n, \quad y=a^{i}, 0<i \leq n$.
Thus $x y^{0} z=a^{n-i} b^{n} \in E$.
But, $a^{n-i} b^{n} \notin E$.
$\Rightarrow \Leftarrow$
Therefore E is not regular.

CFL Pumping Lemma: Let A be a CFL. Then there is a constant n, depending only on A, such that if $z \in A$ and $|z| \geq n$, then there exist strings u, v, w, x, y such that:

- $z=u v w x y$, and
- $|v x| \geq 1$, and
- $|v w x| \leq n$, and
- for all $k \in \mathbf{N}, u v^{k} w x^{k} y \in A$

Proof: Let $G=(V, \Sigma, R, S)$ be a CFG with $\mathcal{L}(G)=A$. Let n be so large that for $|z| \geq n$ s.t. $N \underset{G}{\star} z$ for some $N \in V$, the parse tree for z has height $>|V|+2$.

Let $z \in A,|z| \geq n$.
The parse tree for z has height greater than $|V|+2$.
Thus, some path repeats a nonterminal, N.

Prop: $\quad P=\left\{a^{n} b^{m} a^{n} b^{m} \mid n, m \in \mathbf{N}\right\}$ is not a CFL.

Proof: Suppose P were a CFL.

Let n be the constant of the CFL pumping lemma.
Let $z=a^{n} b^{n} a^{n} b^{n}$.
By the CFL pumping lemma, $z=u v w x y$, and

1. $|v x| \geq 1$,
2. $|v w x| \leq n$, and
3. for all $k \in \mathbf{N}, u v^{k} w x^{k} y \in P$

Since $|v w x| \leq n, \quad v w x \in a^{\star} b^{\star}$ or $v w x \in b^{\star} a^{\star}$.
If either v or x contains both a 's, and b 's, then $u v^{2} w x^{2} y$ is not in P.
Suppose that $v x$ contains at least one a. Then, $u v^{2} w x^{2} y$ is not in P, because it has more a 's in one group than the other.

Suppose that $v x$ contains at least one b. Then, $u v^{2} w x^{2} y$ is not in P, because it has more b 's in one group than the other.
Thus, $u v^{2} w x^{2} y$ is not in P.
$\Rightarrow \Leftarrow \quad$ Thus P is not a CFL.

Prop: $N O N C F L=\left\{a^{n} b^{n} c^{n}: n \in \mathbf{N}\right\}$ is not a CFL.

Proof:

The argument is almost identical. We let $z=a^{n} b^{n} c^{n}$ where n is larger than the constant given by the CFL Pumping Lemma. So $z=u v w x y$ with $|v w x|>0$, $|v w x| \leq n$, and $u v^{i} w x^{i} y$ in NONCFL for all i. Again, neither v nor x can contain letters of two different types, or $u v^{2} w x^{2} y$ is not in $a^{*} b^{*} c^{*}$. But then $u v^{2} w x^{2} y$ cannot contain equal numbers of a 's, b 's, and c 's, as only one or two types of letter have been added.

Any CFL satisfies the conclusion of the CFL Pumping Lemma, but it is not true that any non-CFL must fail to satisfy it. There are other tools that can show a language to be a non-CFL. These include stronger forms of the Pumping Lemma and more closure properties.

Let $E Q U A L$ be the set of strings in $(a \cup b \cup c)^{*}$ that have an equal number of a 's, b 's, and c 's. You can use the CFL Pumping Lemma on this with the right choice of z, but far easier is using the fact that the intersection of $E Q U A L$ with $a^{*} b^{*} c^{*}$ is the language $N O N C F L$.

If A is a CFL and R a regular language, then $A \cup R$ must be regular. Proving this, however, requires a different characterization of the CFL's.

Definition: A pushdown automaton (PDA) is a 7tuple, $P=\left(Q, \Sigma, \Gamma, \Delta, q_{0}, Z_{0}, F\right)$

- $Q=$ finite set of states,
- $\Sigma=$ input alphabet,
- $\Gamma=$ stack alphabet,
- $\Delta \subseteq\left(Q \times \Sigma^{\star} \times \Gamma^{\star}\right) \times\left(Q \times \Gamma^{\star}\right)$ finite set of transitions,
- $q_{0} \in Q$ start state,
- $Z_{0} \in \Gamma$ initial stack symbol,
- $F \subseteq Q$ final states.
$\mathcal{L}(P)=\left\{w \in \Sigma^{\star} \mid\left(q_{0}, Z_{0}\right) \underset{P}{w}(q, X), q \in F, X \in \Gamma^{\star}\right\}$

$$
\begin{aligned}
P_{1}= & \left(\{q, r, s\},\{a, b\},\left\{A, B, Z_{0}\right\}, \Delta_{1}, q, Z_{0},\{s\}\right) \\
\Delta_{1}= & \{\langle(q, a, \epsilon),(q, A)\rangle,\langle(q, b, \epsilon),(q, B)\rangle,\langle(q, \epsilon, \epsilon),(r, \epsilon)\rangle \\
& \left.\langle(r, a, A),(r, \epsilon)\rangle,\langle(r, b, B),(r, \epsilon)\rangle,\left\langle\left(r, \epsilon, Z_{0}\right),(s, \epsilon)\right\rangle\right\}
\end{aligned}
$$

$$
\mathcal{L}\left(P_{1}\right)=\left\{w w^{R} \mid w \in\{a, b\}^{\star}\right\}
$$

Theorem 4.1 Let $A \subseteq \Sigma^{\star}$ be any language. Then the following are equivalent:

1. $A=\mathcal{L}(G)$, for some $C F G G$.
2. $A=\mathcal{L}(P)$, for some PDA P.
3. A is a context-free language.

Proof: We give only a sketch here - there are detailed proofs in [HMU], [LP], and [S].
To prove (1) implies (2), we can build a "bottom-up parser" or "top-down" parser, similar to those used in real-world compilers except that the latter are deterministic.

The top-down parser is a PDA that:

- begins by pushing " $S \$$ " onto its stack
- may pop a terminal from the stack if can at the same time read a matching input letter,
- may execute a rule $A \rightarrow w$ by popping A and pushing w^{R},
- ends by popping the $\$$ when done with the input

The bottom-up parser, somewhat similarly:

- pushes " $\$$ " onto its stack,
- may transfer a terminal from the input to the stack,
- may execute $A \rightarrow w$ by popping w and pushing A,
- ends by popping $S \$$ when done

The proof that the language of any PDA is a CFL (that (2) implies (1)) is of less practical interest.

Given states i and j, let $A_{i j}$ be the set of strings that could take the PDA from state i with empty stack to state j with empty stack.

If we can define rules making each $A_{i j}$ a CFL we win, because the language of the PDA is the union of $A_{s f}$ for all final states f, where s is the start state. (So our grammar has a rule $S \rightarrow A_{s f}$ for each f.)

We have all rules of the form $A_{p q} \rightarrow A_{p r} A_{r q}$, and a rule $A_{p q} \rightarrow a A_{r s} b$ whenever moves of the PDA warrant it.

Here I am skipping some assumptions on the PDA, and the (nontrivial) proof that any accepting run of the PDA corresponds to a valid derivation in our grammar.

