CMPSCI 601: Recall From Last Time L ecture 4

Kleene’s Theorem: Let A C X* be any language.
Then the following are equivalent:

1. A= L(D), for some DFA D.

2. A= L(N), for some NFA N without e transitions
3. A= L(N), for some NFA N.

4. A = L(e), for some regular expression e.

5. Ais regular.

Myhill-Nerode Theorem: The language A is regular
Iff ~4 has a finite number of equivalence classes. Fur-
thermore, this number of equivalence classes is equal to
the number of states in the minimum-state DFA that ac-
cepts A.

CMPSCI 601 Regular Language Closure Lecture 4

Closure Theorem for Regular Sets: Let A, B C ¥* be
regular languages and let h : >* - I™and g : I — X*
be homomorphisms. Then the following languages are
regular:

1. AUB
2. AB
3.A= (- A)
4. ANB
5. h(A)
6. g7(4)
A homomorphism of strings is a function g such that for

any strings « and v, g(uv) = g(u)g(v). The set g~1(A) is
defined as {u : g(u) € A}.

Proofs of Closure Properties:
Because we have so many equivalent models for the class
of regular languages, we can pick the one that makes each
proof easiest:

1. Regular Expressions: union, concatenation, star

2. DFA: complement, hence intersection

3. (product of DFA’s gives intersection directly)

4. Forward homomorphism: substitute into regexp or
general NFA

5. Inverse homomorphism: simulate on DFA

6. Reversal: easy by regular expressions, but also doable
with NFA’s (exercise)

Let h: 2* — A* be a homomorphism.

If R Is a regular expression over X, we can compute a
regular expression h(R) by induction on the definition of
regular expressions. Then we can prove by induction that
h(L(R)) = L(A(R)).

If M is a DFA with alphabet A and £(M) = A, we can
make a DFA for h=1(A) as follows. States, start, and
final states are the same as M. For every letter a in X and
every state g, define §(q, a) to be 63,(q, h(a)).

Then for any w € ¥, 6*(q, w) = 63;(q, h(w)), and

0*(qo, w) E F <
0y (g, h(w)) € F
h(w) € A

w € h(A)

CMPSCI 601: Review of CFL’s Lecture 4

Definition: A context-free grammar (CFG) is a 4-
tuple G = (V, X, R, 5),

e IV = variables = nonterminals,

e > = terminals,

e R = rules = productions, R C V x (V U X)*,

o S5cV,

o V. X, R are all finite.

G = ({S}v{aab}aRhS)
Ry = {(S,aSb),(S,e)} = {S — aSble}

S — €

S — aSb= ab

S — aSb = aaSbb = aabb

S — aSb = aaSbb = aaaSbbb = aaabbb

L(Gy) = {w € {a,b}* | S w}

= {a"b" | n € N}

LG) = {weX | S w}

G

Gy =
({E7 T7 F7 V7 L7 D7 O}? {(7)7 —|—7*7 x? y? Z? 07 17 ct 9}7R27 E)

E —- E+T|T L — z|y|z
s _ T = TxF|F D — 0[12]---9
: - F = (B)V|C C — D|CD
V. — LD

Parse Tree:

Pumping Lemma for Regular Sets: Let D =
(@,,0,q0, F) be a DFA. Letn = |Q|. Letw € L(D)
St. |w| > n. Then Jz,y, 2z € ¥* s.t. the following all
hold:

® Yz =W
o |zy| <n
e |y| > 0, and
o (Vk > 0)zy*z € L(D)
Proof: Letw € L(D) s.t. |w| > n.

w = w1 w9 Ws ce wn u
do d1 q2 q3 - Q4n-1 dn

By the Pigeonhole Principle, (3i < j)g; = ¢;

R —— [N ~
w = w1...W; Wit1 ... Wy Wil ... Wl
4o qi qi qf

6*(q;,y) = ¢;. Thus, zy*2 € L(D) forall k € N. Py

8

We showed: FE = {a’b" | » € N} is not regular.

Proof: Suppose that £ were regular, accepted by a DFA
with n states. Let w = a™b".

By the pumping lemma, w = a"b" = xyz where

° lzy| <n
e |yl > 0,and
o (Vk e N)zy*z € E

Since 0 < |zy| <n, y=4a,0<i<n.

Thus zy’z = a" " € E.

But, a""'b" ¢ E.

==

Therefore E is not regular. [

CFL Pumping Lemma: Let A bea CFL. Then there is
a constant n, depending only on A, such that if z € A and
|z| > n, then there exist strings u, v, w, x, y such that:

e 2 = uvwzy, and

e luz| > 1, and

o lvwz| < n, and

o forall k£ € N, uv*wzky € A

10

Proof: LetG = (V,%, R, S)beaCFGwith L(G) = A.

Let n be so large that for |z| > n s.t. N%z for some
N € V, the parse tree for z has height > |V| + 2.

Letz € A, |z| > n.
The parse tree for z has height greater than |V | + 2.
Thus, some path repeats a nonterminal, V.

Z = UDWIY; (VE € N)(uv*waty € A)

11

Prop: P = {a"b"a"b™|n,m € N} isnot a CFL.
Proof: Suppose P were a CFL.

Let n be the constant of the CFL pumping lemma.
Let z = a™b"a™b".

By the CFL pumping lemma, z = uvwaxy, and

1. jvz| > 1,
2. lvwz| < n, and

3. forall k € N, wofwary € P

Since |vwz| < n, wvwz € a*b* or vwzx € b*a*.

If either v or z contains both a’s, and b’s, then wv?wz?y
Is not in P.

Suppose that vz contains at least one a. Then, uv wz?y
IS not in P, because it has more a’s in one group than the
other.

Suppose that vz contains at least one b. Then, uv?wz?y
Is not in P, because it has more b’s in one group than the
other.

Thus, uv*wz?y is not in P.
=< Thus P is not a CFL. A

12

Prop: NONCFL = {a"b"c" : n € N} is not a CFL.

Proof:

The argument is almost identical. We let z = a"b"c”
where n IS larger than the constant given by the CFL
Pumping Lemma. So z = wvwzxy with |vwz| > 0,
lvwz| < n, and uwv'wz'y in NONCFL for all 4. Again,
neither v nor x can contain letters of two different types,
or uwv’wa?y is not in a*b*c*. But then uv?wz?y cannot
contain equal numbers of a’s, b’s, and ¢’s, as only one or
two types of letter have been added.

o

13

Any CFL satisfies the conclusion of the CFL Pumping
Lemma, but it Is not true that any non-CFL must fail to
satisfy it. There are other tools that can show a language
to be a non-CFL. These include stronger forms of the
Pumping Lemma and more closure properties.

Let EQU AL be the set of strings in (a U b U ¢)* that
have an equal number of a’s, b’s, and ¢’s. You can use
the CFL Pumping Lemma on this with the right choice
of z, but far easier is using the fact that the intersection
of EQU AL with a*b*c* Is the language NONCF L.

If AisaCFL and R aregular language, then AU R must
be regular. Proving this, however, requires a different
characterization of the CFL’s.

14

CMPSCI 601 Pushdown Automata (PDA’s) Lecture 4

Definition: A pushdown automaton (PDA) is a 7-
tuple, P = (Q, %, T, A, qo, Zo, F)

e () = finite set of states,

e > = input alphabet,

e [' = stack alphabet,

o A C (Q xX*xI'™)x(Q xTI™) finite set of transitions,

® g € () start state,

e 7, € I'Initial stack symbol,

o [' C () final states.

PDA = NFA + stack

L(P) = {weX| (qO,ZO)%(q,X), gEF,X eI}

15

P, = ({q,7,8},{a,b},{A, B, Zy}, A1, q, Zy, {s})

Ar = {((g,a,€),(q,A)),((¢,D,€),(q, B)), ((¢,€,€), (,€))
((r;a, A), (r,€)),{(r;0, B), (r,€)), {(7: €, Z0), (5, €)) }

£ r Z,!
()0
b/B bB/

L(P) = {ww” | we {a,b}*}

16

Theorem 4.1 Let A C X* be any language. Then the
following are equivalent:

1. A= L(G), for some CFG G.
2. A= L(P), for some PDA P.

3. A isa context-free language.

Proof: We give only a sketch here — there are detailed
proofs in [HMU], [LP], and [S].

To prove (1) implies (2), we can build a “bottom-up parser”
or “top-down” parser, similar to those used in real-world
compilers except that the latter are deterministic.

17

The top-down parser is a PDA that:

e begins by pushing “S$” onto its stack

e may pop a terminal from the stack if can at the same
time read a matching input letter,

e may execute arule A — w by popping A and pushing

wh,

e ends by popping the $ when done with the input

The bottom-up parser, somewhat similarly:

e pushes “$” onto its stack,
e may transfer a terminal from the input to the stack,
e may execute A — w by popping w and pushing A,

e ends by popping S$ when done

18

The proof that the language of any PDA is a CFL (that
(2) implies (1)) is of less practical interest.

Given states 7 and j, let A;; be the set of strings that could
take the PDA from state ¢ with empty stack to state 5 with
empty stack.

If we can define rules making each A;; a CFL we win, be-
cause the language of the PDA is the union of A, for all
final states f, where s is the start state. (So our grammar
hasarule S — A, for each f.)

We have all rules of the form 4,, — A, A,,, and a rule
A,; — aA, ;b whenever moves of the PDA warrant it.

Here | am skipping some assumptions on the PDA, and
the (nontrivial) proof that any accepting run of the PDA
corresponds to a valid derivation in our grammar. [

19

