
CMPSCI 601: Recall From Last Time Lecture 2

Defining a Model of Computation:

� How is the input organized?
� What computational operations are allowed?
� Do we have internal memory, and how much?

Some Formal Models of Computation:

� Boolean: (AND, OR, NOT, SLP’s)
� Formal Language Theory: (starting today)
� First-Order Logic: (

�
, �)

� Recursive Function Theory: (Bloop)
� Abstract RAM: (as in an algorithms course)

1

Relations Among The Models:

Let’s look at a single problem. Given � input bits, we
want to know whether exactly two of them are ones. This
question can be posed in each of our models:

� Boolean: There are various ways to build an SLP or
circuit, which we’ll explore on HW#1.

� Finite-State Machine: Sweep the input string left-
to-right, remembering whether we’ve seen zero, one,
two, or more than two ones.

� First-Order Logic:
��� � ��� ���	�
� � ���� ��� ����� � ��� � � � � � � � ��

� Numerical Input: Is the input the sum of two dis-
tinct powers of two? On HW#1 you’ll write a Bloop
program to decide this.

� Abstract RAM: The problem probably defaults to
one of the others once we decide on our data repre-
sentation.

2

CMPSCI 601: Formal Language Theory Lecture 2

For the next few lectures we’ll be looking at computa-
tional problems defined in terms of strings:

Definition: An alphabet is a non-empty finite set, e.g.,� � �������	�
,
 � ������������

, etc.

Definition: A string over an alphabet
�

is a finite
sequence of zero or more symbols from

�
. The unique

string with zero symbols is called � . The set of all strings
over

�
is called

���
.

Definition: A language over
�

is any subset of
� �

. The
decision problem for a language � is to input a string �
and determine whether � � � .

(Compare to the Java String type and the charAt
method. In some ways, though, strings in formal lan-
guage theory are more like files with only sequential ac-
cess.)

3

In formal language theory we look at various kinds of
machines that take a string as input, look at one letter at a
time, and decide whether the string is in some language.

We also look at various formal ways to specify a lan-
guage, such as regular expressions and context-free gram-
mars, that are used in the real world.

In the 1950’s and 1960’s it was discovered that each of
the most natural machine models corresponded to a spec-
ification system: the languages that could be decided by
the machines were exactly those that could be specified
in a certain way. Here we’ll see some examples of that
phenomenon.

Finally, we will always be interested in when a language
cannot be decided by any machine in some class, or can-
not be specified within some system. Such a result is
called a lower bound, because we show that some partic-
ular amount of resources is insufficient.

4

CMPSCI 601: Regular Expressions and Sets Lecture 2

Recall Definitions: alphabet, string, language.

Definition: The set of regular expressions R
� � �

over
alphabet

�
is the smallest set of strings such that:

1. if
� � �

then
� � R

� � �
2. � � R

� � �
3.
� � R

� � �
4. if �

��� � R
� � �

then so are the following:

(a)
�
���

� �

(b)
�
���

� �

(c)
�
��	
�

So far this defines only the syntax, the set of strings over
the larger alphabet (

�
, operators, and punctuation) that

denote regular languages over
�

.

Conventions: Omit � , use hierarchy of operations with
�

before � before � . Think of addition (�), multiplication
(�), and exponentiation (

�
).

5

Examples:

� ��� � �
	 � � � ����� � � �

� ��� � � � �
�
 �
�
� �
�
 � �
	 � � � ����� � �

� ��� � �
	
� �

	
 �
	
�
	 � � � ����� ���� � �

Meanings:

� � � � 	 � � � � ������������� � ���	� �	
�
	
 � � ����� �� � N
�

� � � � � � � � 	 � � � � � ����� 	�
	
��� � ��� � ��� ����� � �

� � � � 	 � � 	 � 	 � 	 � � � � � ������ �
	

� � � � � � �
� ��� ����� � �

Recall the meaning of Kleene star: For any set � ,

� 	 � � �
�! #" �

�
� � " � � � � � � � $�$	$
� � � � � � �

� ��� � � � � � � �
� $%$	$

� � � � � �
�
	
 �'& � � � N (� � ��
�
�
 � �'& � � �

6

Meaning of a Regular Expression:

(A recursive definition of the mapping � from expres-
sions to languages.)

1. if
� � �

then
� � � � � �

; � � ��� � � � �
2. � � R

� � �
; � � � � � � � �

3.
� � R

� � �
; � � � � � �

4. if �
��� � � � � �

then so are
�
� �

� �
,
�
���

� �
,
�
� 	
�
:

� � ��� � � � � � � � � � � � �
� � � � � � � � � � � � � � � � ����� ��� � � � � � ��� � � � � � �

� � � 	 � � � � � � � � 	

Definition 2.1 � � �
	 is regular iff

� �
� � � � � � � � � � � � � � � �

In other words, a set, � , is regular iff there exists a regular
expression that denotes it.

7

Definition: A deterministic finite automaton (DFA)
is a tuple,

� � ��� � � ������� ��� �
� �

is a finite set of states,
� �

is a finite alphabet,
� � �	�
 � � �

is the transition function,
� � � �

is the start state, and
� � � �

is the set of final or accept states.

A DFA executes the following pseudo-Java algorithm:

public boolean isAccepted (String w) {
State s = startState;
for (int i=0; i < w.length(); i++)

s = delta(s, w.charAt(i));
return isFinalState(s);}

8

� � � � � � � � � �������� � � � � ��� � � � � �
� � � ����� � � ��� ����� ����� � � 	� � � � �
��� � ����� � � � ����� � � 	� ����� �

a
s q

b

b

a

� � � � � �
�

� � � � � � � � � � � � � � ��	�
	
� � � � � � � � ��� ����� � �

� � � � � � 	 � � 	 � 	 � 	 �

9

A DFA is an abstraction of any algorithm that:

� inputs a string (or text file)
� reads one letter at a time
� reads the input left to right, only once
� has only � � � �

bits of internal memory

We will be interested in the following results about DFA’s
and regular languages.

� Kleene’s Theorem: A language is decided by some
DFA iff it is regular.

� Myhill-Nerode Theorem: There is a minimal DFA
for any regular language, definable in terms of a purely
language-theoretic property.

� Non-Regularity Proofs: If a language is not regular,
we can usually prove that fact.

10

To prove Kleene’s Theorem it is convenient to introduce
a new, artificial model of computation:

Definition: A nondeterministic finite automaton
(NFA) is a tuple,

� � ��� � � ��� � � ��� �
� �

is a finite set of states,
� �

is a finite alphabet,
� � �����
 � �

�
� � � � � � � � �

is the transition function,
� � � �

is the start state, and
� � � �

is the set of final or accept states.

� � � � � � � � ���� � � � � �

Recall that
� �	� �

, the power set of
�

, is
� � � � � � �

.

So
� � � ����� is the set of states to which

�
might go if it

reads
�

when in state � . There might be zero, one, or
more than one.

11

Example:

� & � � � � " ��
	
�
 � � &�� � � � ����� �	� ��� & � � " ��� � &�� � � �
� & � ����� � " ��� � � � � " � � ����� � " ��� � � � � " � � � � � �	
	
�
 ����� � & ��� � � � � &�� � � � �

0,1
0 1 2 3

0,1

1 0,1 0,1 0,1
n+1

This NFA might accept a string � if it is in
� � � � &

. It
cannot accept a string that is not in this language.

The natural DFA deciding � � � & �
has

� &�� � states. We’ll
see next time that no DFA with fewer than this many
states can decide this language.

12

Proposition 2.2 Every NFA
�

can be translated into an
NFA without � -transitions

� �
such that � � � � � � � � � �

.

Proof: Given
� � ��� � � ��� � � " ��� � , let

� � � ��� � � ��� � � � " ��� � �

where

� � � � � ��� � ��� �	� � � ��� � � � �� � �� � � �� � �

F
� � � � � � � � � � � � � �� � �

ε

ε

a

a b

a a

b

b

b

b

a

a a

b

b

b

ba

a

a

b

0 0

1 1 2

3 4

2

3 4

� � � �

13

Notation: For a DFA,
� � ��� � � � � ��� ��� �

, let
�
	
� � � � �

be the state that
�

will be in after reading string � , when
started in � ,

�
	
� � � � � � �

�
	
� � � � ����� � � �

	
� � � � �������

� � � � � � � � �
	
� � � � � � � �

For an NFA without � transitions,
� � ��� � � ��� ��� ��� �

,
let

�
	
� � � � � be the set of states that

�
can be in after

reading string � , when started in � ,

�
	
� � � � � � � � � �

�
	
� � � � ��� � � �

����� ������	�
�
� � � �����

� � � � � � � � �
	
� � � � ��� � �� � �

14

Proposition 2.3 For every NFA,
�

, with � states, there
is a DFA,

�
, with at most

� &
states s.t. � � � � � � � � �

.

Proof: Let
� � ��� � � � � � � " ��� � . By Proposition 2.2

may assume that
�

has no � transitions.

Let
� � � � ��� ��� � ����� � � " � ��� � �

� �	� ����� � �
�����

� � � � ���

� � � � � � � � � � � �� � �

1

{a} {a,b} {a,c}

1 1

0

10

0

a b c

0, 1

0
N

D

15

Claim: For all � � �
	 ,

�
	
� � � " � � � � � �

	
� � " � � �

By induction on
� � �

:� � � � �
:
�
	
� � � " � � � � � � � " � � �

	
� � " � � �� � � � � � �

: � � � �
.

Inductively,
�
	
� � � " � � � � � �

	
� � " � � �

�
	
� � � " � � � ��� � � � �

	
� � � " � ��� � �����

� �
����� � ��� ���	��	�
 �

� � � �����
� �

����� � ����� 	
 �
� � � �����

� �
	
� � ��� ���

Therefore, � � � � � � � � �
.

�

Example:
� &

had � � �
states but its equivalent DFA has� &�� � . This is because every reachable state of the DFA is

a set containing the start state of the
� &

, so only half of
the possible sets are reachable.

16

Theorem 2.4 (Kleene’s Theorem) Let � � �
	 be any

language. Then the following are equivalent:

1. � � � � � �
, for some DFA

�
.

2. � � � � � �
, for some NFA

�
with no � -transitions

3. � � � � � �
, for some NFA

�
.

4. � � � � � � , for some regular expression � .

5. � is regular.

Proof: Obvious that
� � � � �

.
� � �

by Prop. 1.2 (� -elimination).� � �
by Prop. 1.3 (subset construction).

� � �
by definition

� � �
: We show by induction on all regular expressions

� that there is an NFA
�

with � � � � � � � � �
:

e = ε /e = e = a

a

0

17

L(N) = L(N) + L(N)1 2 1 2L(N) = L(N) L(N)

ε

N1
ε

L(N) = (L(N))1
*

ε

ε

N1

N2

N1

N2

ε

Union Concatenation

Kleene Star

18

� � �
: (Cf. state elimination proof [S, Lemma 1.32])

Let
� � � �����	
�
	
 � � � � � � � ������� �

,
� � � � � �	
�
	
 ��� � �

� ���� � � � ��� � �
	
� � � � (no intermediate state

� � ���

� "��� � ��� ��� � � �� ����� �
�

� � � �� � �

� � � ���� � � ���� � � �� � � � � � �
� � � � � � � 	 � �

� � � 	 �

�
� �

&
���
	 � $	$�$ � �

&
����

� � � � � � � � �

i j
k

i j

i k+1 k+1 j

k

k+1
k

k+1 k+1
k

L

L

L

L

�

19

