CMPSCI 601: Recall From Last Time

Lecture 2

Defining a Model of Computation:

e How is the input organized?
e \What computational operations are allowed?

e Do we have internal memory, and how much?

Some Formal Models of Computation:

e Boolean: (AND, OR, NOT, SLP’s)

e Formal Language Theory: (starting today)
e First-Order Logic: (4, V)

e Recursive Function Theory: (Bloop)

e Abstract RAM: (as in an algorithms course)

Relations Among The Models:

Let’s look at a single problem. Given n input bits, we
want to know whether exactly two of them are ones. This
question can be posed in each of our models:

e Boolean: There are various ways to build an SLP or
circuit, which we’ll explore on HW#1.

e Finite-State Machine: Sweep the input string left-
to-right, remembering whether we’ve seen zero, one,
two, or more than two ones.

e First-Order Logic:
dr:Ay:—(c=y)AVz: I(z) < (z=xVz=y)

e Numerical Input: Is the input the sum of two dis-
tinct powers of two? On HW#1 you’ll write a Bloop
program to decide this.

e Abstract RAM: The problem probably defaults to
one of the others once we decide on our data repre-
sentation.

CMPSCI 601 Formal Language Theory Lecture 2

For the next few lectures we’ll be looking at computa-
tional problems defined in terms of strings:

Definition: An alphabet is a non-empty finite set, e.g.,
> =40,1},T = {a,b, c}, etc.

Definition: A string over an alphabet X iIs a finite
sequence of zero or more symbols from . The unique
string with zero symbols is called e. The set of all strings
over Y is called X*.

Definition: A language over X is any subset of >*. The
decision problem for a language L is to input a string w
and determine whether w € L.

(Compare to the Java St ri ng type and the char At
method. In some ways, though, strings in formal lan-
guage theory are more like files with only sequential ac-
Ccess.)

In formal language theory we look at various kinds of
machines that take a string as input, look at one letter at a
time, and decide whether the string is in some language.

We also look at various formal ways to specify a lan-
guage, such as regular expressions and context-free gram-
mars, that are used in the real world.

In the 1950’s and 1960’s it was discovered that each of
the most natural machine models corresponded to a spec-
Ification system: the languages that could be decided by
the machines were exactly those that could be specified
In a certain way. Here we’ll see some examples of that
phenomenon.

Finally, we will always be interested in when a language
cannot be decided by any machine in some class, or can-
not be specified within some system. Such a result is
called a lower bound, because we show that some partic-
ular amount of resources is insufficient.

CMPSCI 601 Regular Expressions and Sets Lecture 2

Recall Definitions: alphabet, string, language.

Definition: The set of regular expressions R(X) over
alphabet > is the smallest set of strings such that:

1.ifa € X thena € R(Y)

2. e e R(Y)

3.0 e R(Y)

4. if e, f € R(X) then so are the following:

(@) (eU f)
(b) (e f)
(c) ()

So far this defines only the syntax, the set of strings over
the larger alphabet (3, operators, and punctuation) that
denote regular languages over ..

Conventions: Omit o, use hierarchy of operations with *
before o before U. Think of addition (U), multiplication
(o), and exponentiation (*).

Examples:
e c; =0"€ R({0,1})
eco=((aUb)o(aUb))* € R({a,b})
e ¢35 = a*(ba*ba*)* € R({a,b,c})

Meanings:
L(0%) = {¢0,00,0%,0% ...} = {0°]¢e N}
E((an)2*) = {we{a,b}" | lw| =0(mod2)}
o Ll (aba)) = {w € {a,b} | #lw) =
0 (mod 2)}

Recall the meaning of Kleene star: For any set A,

A = [A
2=0
= AU At U A%U
= {eJUAU{zy | z,y e A}U--.

= {xlxg...xn | nEN;azl,...,xneA}

Meaning of a Regular Expression:

(A recursive definition of the mapping £ from expres-
sions to languages.)

l.ifa € Xthena € R(Y); L(a) = {a}

2. € R(%); L(e) = 1€}
3.0 eR(X); LO)=0
4.ife, f € R(X) thensoare (eU f), (eo f), (e*):

LeUf) = Le)UL(f)
Leof) = L(e)L(f) = {uv | u e Lle),ve L(f);
L(e") = (L(e)

Definition 2.1 A C X* is regular iff
(de € R(%))(A = L(e)) [

In other words, a set, A, is regular iff there exists a regular
expression that denotes it.

Definition: A deterministic finite automaton (DFA)
IS a tuple,

D= (Q,>,6,s,F)

e () Is a finite set of states,

e X Is a finite alphabet,

e) : () x X — (Isthe transition function,
e s € () Is the start state, and

o [’ C () Is the set of final or accept states.
A DFA executes the following pseudo-Java algorithm:

publ i c bool ean i sAccepted (String w {
State s = start St at e;
for (int 1=0; 1 < wlength(); 1++)
s = delta(s, w.charAt(i));
return I sFinal State(s);}

D, = ({57Q}7{aab}751737{3})
01 = {((s,a),s),((s,0),9), ({¢,0),4),({(g, D), 8)}

) e

Ly = L(Dy) = {w € {a,b}” | #(w) =0(mod?2)}

L, = L(a*(ba*ba*)")

A DFA is an abstraction of any algorithm that:

e Inputs a string (or text file)

e reads one letter at a time

e reads the input left to right, only once
e has only O(1) bits of internal memory

We will be interested in the following results about DFA’s
and regular languages.

e Kleene’s Theorem: A language is decided by some
DFA iff it is regular.

e Myhill-Nerode Theorem: There is a minimal DFA
for any regular language, definable in terms of a purely
language-theoretic property.

e Non-Regularity Proofs: If a language is not regular,
we can usually prove that fact.

10

To prove Kleene’s Theorem it is convenient to introduce
a new, artificial model of computation:

Definition: A nondeterministic finite automaton
(NFA) is a tuple,

N=(Q,2,A,s,F)

e () Is a finite set of states,

e X Is a finite alphabet,

o A (Q x(XU{e}) = p(Q) is the transition function,
e s € () Is the start state, and

e [' C () Is the set of final or accept states.

LIN) = {w]|siqeF}

w

Recall that p(S), the power setof S,is{A | A C S}.

So A(q, a) is the set of states to which N might go if it
reads a when in state q. There might be zero, one, or
more than one.

11

Example:

({QO; SR 7qn—|—1}7 {07 1}7 An; qo0, {Qn—l—l})
— {<<QO, O>7 {QO}>7 <<qO7 1>7 {QO, QI}>7 Tt <<Qn7 1>7 {Qn+1}>}

1 0,1 0,1 0,1 01
00

0,1

Ny,
Ap

This NFA might accept a string w if it is in X*1X". It
cannot accept a string that is not in this language.

The natural DFA deciding £(N,,) has 2" states. We’ll
see next time that no DFA with fewer than this many
states can decide this language.

12

Proposition 2.2 Every NFA N can be translated into an
NFA without e-transitions N’ such that L(N) = L(N').

Proof: Given N = (Q, >, A, qo, F), let N' = (Q, >, A, qo, F')
where

A(q,a) = {r | (Els,t)qe—*>si>t€—*>r}
F' = {q| (336F)q6—*>3}

13

Notation: ForaDFA, D = (Q,%,9,s, F), let §*(¢q, w)
be the state that D will be in after reading string w, when
started in g,

6*(g,€) = ¢
6 (q,wa) = §(6*(q, w), a)

L(D)={w | §*(s,w) € F}

For an NFA without e transitions, N = (Q,>, A, s, F),
let A*(q,w) be the set of states that NV can be in after
reading string w, when started in g,

A*(g,€) = {4}
A*(q,wa) = U Ar,a
(@uwa) =y Al

L(N) = {w | A*(s,w)NF # (0}

14

Proposition 2.3 For every NFA, N, with n states, there
isa DFA, D, with at most 2" states s.t. £L(D) = L(N).

Proof: Let N = (Q,>, A, qo, F'). By Proposition 2.2
may assume that NV has no e transitions.

Let D = (@(Q), 27 57 {QO}7 F,)

6(S,a) = U A(r,a)

resS

Fr={SCQ|SNF#0}

15

Claim: For all w € >*,

0"{@},w) = Aqo,w)
By induction on |w|:
jw| =0:0*"({qo},€) = {20} = A™(qo,€)

lw| =k +1: w = ua.

Inductively, 6*({qo},u) = A*(qo, u)

0*({qo}, ua) = 6(6"({qo}, u), a)

— U A(T’, a)
r€5*({QO}7u)

= U Ar,a)

reA*(qo,u)
= A*(q,ua)
Therefore, L(D) = L(N).)

Example: N, had n+ 2 states but its equivalent DFA has
2"+l This is because every reachable state of the DFA is
a set containing the start state of the V,,, so only half of
the possible sets are reachable.

16

Theorem 2.4 (Kleene’s Theorem) Let A C X* be any
language. Then the following are equivalent:

1. A= L(D), for some DFA D.

2. A= L(N), for some NFA N with no e-transitions
3. A= L(N), for some NFA N.

4. A = L(e), for some regular expression e.

5. Ais regular.

Proof: Obvious that1 — 2 — 3.

3 — 2 by Prop. 1.2 (e-elimination).

2 — 1 by Prop. 1.3 (subset construction).

4 + 5 by definition

4 — 3: We show by induction on all regular expressions
e that there is an NFA N with L(e) = L(N):

SO 0O O

17

Union Concatenation

L(N)=L(Nq) +L(Ny L(N) =L(Nyg) L(N,

Ny
%

Kleene Star

L(N) = (L(N)Y . O~

18

3 — 4: (Cf. state elimination proof [S, Lemma 1.32])
Let N=({1,...,n},2, A, LF), F={f1,..., [}

Li; = {w | j € A%(4,w); no intermediate state # > k}

L ={a|jeAGa)} U {e]i=j}

k+1 _ 1k k k L}
Lz.j = LZ-]- U L¢k+1(Lk+1k+1) Lk+1,j

k
L k+1 k+1

19

