CMPSCI 601: Recall From Last Time L ecture 19

Savitch’s Theorem: For s(n) > logn,
NSPACE[s(n)] C DSPACE[(s(n))’]

Immerman-Szelepcsényi Theorem: For s(n) >
logn,

NSPACE[s(n)] = c0o-NSPACE|s(n)]
Closure Theorem: Virtually all the classes we’ve con-
sidered are closed downward under logspace reductions.

Important Technical Fact: Logspace reductions are
transitive, i.e.,if A< Band B < Cthen A <C.

CMPSCI 601: Finite Model Theory Lecture 19

Consider the input (the object we are working on) to be
a finite logical structure, e.g., a binary string, a graph, a
relational database, or whatever. Remember that a struc-
ture includes a list of the objects and lookup tables for all
the variables, constants, relations and functions.

Definition 19.1 FO is the set of first-order definable deci-
sion problems on finite structures. Let S C STRUCs;4(X].

S € FO Iff
S ={A € STRUCspX] | A ¢}, somepec L(X)M

Defining Addition in First-Order Logic:

Addition is a function from pairs of binary numbers to
binary numbers, that is, a map from structures of one vo-
cabulary to structures of another:

Q. : STRUC[S.5] — STRUC[Z,)

A a; Qs ... Qp_1 QA
B + by by ... b,_1 b,
S S1 82 ... Sp_1 Sy

C(i) = (37 > 9)(A(y) A B(I) A
(Vk.j > k> i)(A(E) V B(k)))

Q+(1) = AQ) © B(i) © C(i)

Q+(c) € FO

Each bit of the sum is definable by a first-order formula.

Structures and Strings:

Our computational models act on various different data
structures. Turing machines take strings, usually binary
strings, as input. Propositional formulas take unstruc-
tured sets of bits. First-order formulas take first-order
structures.

As long as type-casting among these different representa-
tions is “easy” in the context of the complexity problem
we are considering, we can deal with any of these rep-
resentations. If pressed, we can say that we are always
dealing with strings.

With first-order structures, we pick a natural way to en-
code each structure A € STRUCg;,|X] as a binary strings
bin(A).

Example:

e binary strings: bin(A,) = w
e graphs: G = ({1,...,n}, E,s,t)
bln(G) = a11a12--.AppS1S9 . - . Slogntl . tlogn

° pair of numbers: aq; . .. a1,b11 ... b1p

4

Theorem 19.2 FO C L = DSPACE|logn]

Proof:
Given: ¢ = (3z1)(Vza) - - - (Vzop)10,

we build a DSPACE/|logn] TM M such that

AEo & M(bin(A)) =1

We use induction on k, the number of quantifier pairs.

Base case: k£ = 0.

¢ = E(s,t) or another atomic predicate: Look up the
right bit.

¢ = s < t or another numerical predicate: Do the calcu-
lation with the given values.

Inductive step:

o = (3w3)(Vay) - (Vo)W

Note that if other variables like 1 or x5 appear in) they
must be replaced by particular values.

By the inductive hypothesis, there is a logspace TM M,
AE ¢ & M'(bin(A)) =1

We modify M’ by adding 2[logn | worktape cells.

Worktape of M: X1 X9 Worktape of M’

" logn] [logn]

M cycles through all values of x; until it finds one such
that for all x4, M’ accepts. [

A Java program can easily be written to test whether A =
@. Ithas nested f or loops, one for each quantifier. Since
It uses only a constant number of variables of logn bits
each, it represents a deterministic logspace algorithm.

CMPSCI 601 Second-Order Logic Lecture 19

Second-order logic consists of first-order logic, plus new
relation variables over which we may quantify.

(VA")¢
For all choices of the r-ary relation A, ¢ holds.

In a finite model with a universe of size n, a first-order
variable represents the name of an element of the uni-
verse, which is [logn| bits. A unary second-order vari-
able A(x) represents a property which each element of
the domain has or doesn’t have, which is n bits. And a
k-ary relation B(z1,...,x;) requires n* bits to specify,
because it is true or false for each k-tuple of domain ele-
ments.

SO is the set of second-order expressible boolean queries.

SO4d s the set of second-order existential boolean queries,
where all the second-order quantifiers are existential.

Graph 3-Colorability is in SO4:

Ppue = (ARY)(IYV)(AB)(V2)[(R(2) V Y (2) V B(x))
A (Y)(E(x y) =

SAT is the set of boolean formulas in conjunctive normal
form (CNF) that admit a satisfying assignment.

d,, = (ASH(Vt)(3z)(C(t) —
(P(t,x) NS(z)) V (N(t,z) A —S(x)))

C(t) = “tisa clause; otherwise ¢ is a variable.”
P(t,z) = “Variable x occurs positively in clause ¢.”
N(t,x) = *“Variable z occurs negatively in clause ¢.”

© = (5171\/33—2\/5133)/\(1171\/5172\/27—3)/\(3}'—1\/172\/27—3)

-
-
L.
-
-

CLIQUE is the set of pairs (G, k) such that G is a graph
that has a complete subgraph of size k.

Let Inj(f) mean that f is an injective (one-to-one) func-
tion. Being an injective function is a first-order definable
property of a binary relation:

Inj(f) = (Vay)(f(z) = fly) = z=y)

Poge = (F1INJ(f))(Vzy)((z # y A flz) < kA fly) < k)
— E(z,y))

We could name a particular set of vertices with a unary
relation, but the injective function lets us easily say that
the set has size exactly k.

10

Theorem 19.3 (Fagin’s Theorem) NP is equal to the set
of existential, second-order boolean queries, NP = SO4.

Proof: NP O SOd:. We are given a second-order exis-
tential sentence

®=3RY)...AR})Y € L(X)
We build an NP machine NN such that for every A €
STRUCi X],
AP < N(bin(4)) =1 (19.4)
A e STRUCﬁn[E}, n = |A|.

N nondeterministically writes down a binary string of
length n'! representing R, and similarly for R, through
Ry.

.A, — (.A, Rl,RQ,...,Rk)

N accepts iff A" = 1.

Since FO C L, as we showed earlier this lecture, we can
test whether A’ |= 1 in logspace and so certainly in NP.
Thus Equivalence 19.4 holds.

11

NP C SO3: Let N be an NTIME[n*] one-tape TM.
We will define an SO sentence,
® = (3CE...C2%H ANy (19.5)

meaning, “There exists an accepting computation C, A
of N.” The main work will be defining the first-order

part .
We will show that:

AE® < N(bin(4d) =1

Remark 19.6 Assume that language has numeric rela-
tions: <, SUC and constants 0, max refering to total or-
dering on the universe, its successor relation, the min-
Imum and maximum elements in this ordering, respec-
tively.

Then ¢ Iin Equation 19.5 can be made universal,

p = (Vor---az)y,
with v quantifier free.

12

CMPSCI 601: Encoding N’s Computation Lecture 19

Fix A, n=|A]

Possible contents of a computation cell for V:
F:{’Yo,...,’yg_l}:(Q X E)UZ

Ci(s1,..., Sk t1,...,tr) meansthat cell s attime ¢ is sym-
bol Vi

A(t) means that the ¢ + 1% step of the computation makes
nondeterministic choice “1”; otherwise it makes choice
“0”. (We have normalized N so that it chooses one bit
per step.)

13

Space
0 1 5 n—1mn nF—1] A
Time 0 <Q(), 'w0> w1 s Wp—1 LI - LI (5()
1wy (g1, wr) Wp—1 W --- U 01
t a_{agla; 01
t+1 b Ot41
n*—1| (g, 1) U oo U

Accepting computation of N on input wowy - - - wy,_1

Note that we can tell whether the symbol b occurs legally
In this computation by looking at the symbols a_4, ay,
and a1, and consulting the state table of V.

14

We now write a first-order sentence, ¢(C', A), saying that
C, A codes a valid accepting computation of V.

o = aANB AN

row 0 codes input bin(A)

(Vg, t,i 7])(_'(CZ<§>E) N Cj(gaa))
(V¢)(row ¢ + 1 follows from row ¢ via move A(t) of N)

SS9
1]

last row of computation is accept ID
AE® < N(bin(4) =1

¢ = ICFFCT--- O AM(p)

“4 an accepting compution: N(me) = 1”

15

Checking the start configuration:
a = row 0 codes input bin(.A)

For simplicity, we look at what happens when X has only

a single unary relation symbol, R, so the input is just a
binary string.

‘<QO7wO> wy cr Wp—q L o--- | | ‘

Y =0; 11 =1; 72 = L; v3 = {qo,0); 74 = {qo, 1)

Q
1]

R(0) — C4(0,0)
A =R(0) — Cs(0,0)
A (Vi > 0)(R(i) — C1(0i,0)
A =R(i) — Cy(0i,0))
A (V5 > n)Cs(3,0)

16

The most interesting case: n

We view the state table of IV as a finite function, so that

<a_1, g, ay, 6> ﬂ> b

means that the triple a_1, ag, a; leads to b via move ¢ of
N.

m =
(VE.t < max)(V5.0 < 5 < max)

A (SPAR) YV

<a—1,a0,a1,5>ﬂ>b

—C,_(5—1,t) V =Cyy(5,1) V =Cy, (5+1,t) V Cy(5,t+1))
Here —° is — if § = 1 and it is the empty symbol if § = 0.

n o= 1 NmAn

where ny and n, encode the same information when s = 0
and max respectively. [

17

Theorem 19.7 (Cook-Levin Theorem)
SAT is NP-complete.

(This theorem was proved roughly simultaneously by Steve
Cook in the USA and Leonid Levin in the USSR, before
Fagin proved his theorem. We’ll prove Cook-Levin as a
corollary of Fagin’s Theorem, somewhat contrary to his-
tory. But note that the proof of Cook-Levin in Sipser, for
example, is almost the same as our proof of Fagin.)

Proof. Let B € NP. By Fagin’s theorem,

B={A]|AkEo

® = (3C3 - O AV) (a)

with v quantifier-free and CNF,

with each 77 a disjunction of literals.

18

Let A be arbitrary, with n = ||.A].

Define a boolean formula ¢(.A) as follows:

boolean variables:

Ciler, ... ean), Aler, ..., er), i=1,...,9,€e1,...,e9 € |A|

clauses:
Ti(e), j=1,...,recl|Al

T7(e) is Tj(e) with atomic numeric or input predicates,
R(e), replaced by true or false according as they are true
or false in A. Occurrences of C;(¢), and A(e) are consid-
ered boolean variables.

S)
Il

(CE* -+ G A (V) A Ti(3)

A A Te)

e1,...erc Al j=1 7

pS
=
I

Ae€B & A= & ©(A) € SATH

19

Proposition 19.8
3-SAT = {p € CNF-SAT | ¢ has < 3 literals per clause}

3-SAT Is NP-complete.

Proof: Show SAT < 3-SAT.

Example:

C = (UiVLV VL)

C'= (U1 VU Vd) A (di VAV dy) A (da V Ly V d3) A
(ds V U5 V ds) A (do V Lg V £r)

Claim: C € SAT & C' € 3-SAT

In general, just do this construction for each clause in-
dependently, introducing separate dummy variables for
each cluase. The AND of all the new 3-variable clauses
Is satisfiable iff the AND of all the old clauses is. [

20

