
CMPSCI 601: Recall From Last Time Lecture 19

Savitch’s Theorem: For ��������� 	�
��� ,

NSPACE � ��������� � DSPACE � ���������������

Immerman-Szelepcsényi Theorem: For ������� �
	�
���� ,

NSPACE � ��������� � co-NSPACE � ���������

Closure Theorem: Virtually all the classes we’ve con-
sidered are closed downward under logspace reductions.

Important Technical Fact: Logspace reductions are
transitive, i.e., if � � � and � � � then � � � .
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CMPSCI 601: Finite Model Theory Lecture 19

Consider the input (the object we are working on) to be
a finite logical structure, e.g., a binary string, a graph, a
relational database, or whatever. Remember that a struc-
ture includes a list of the objects and lookup tables for all
the variables, constants, relations and functions.

Definition 19.1 FO is the set of first-order definable deci-
sion problems on finite structures. Let � � STRUCfin ��� � .
� � FO iff

� � ��� � STRUCfin ��� � ��� � � 	�
� some 	 � � � � ���
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Defining Addition in First-Order Logic:

Addition is a function from pairs of binary numbers to
binary numbers, that is, a map from structures of one vo-
cabulary to structures of another:� � �

STRUC ������� � � STRUC ���	� �

� 
�� 
 � . . . 
����� 
�
� � ��� � � . . . ������ ��

� � � � � . . . � ���� � 

� ��� � � ����� � � � � � ��� � � � ��� � �
�"!$#&%'� � # � � � � � �(# �*) � �(# �����

� � ��� � � � ��� � + � ��� � + � ��� �

� � �-, � � FO

Each bit of the sum is definable by a first-order formula.
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Structures and Strings:

Our computational models act on various different data
structures. Turing machines take strings, usually binary
strings, as input. Propositional formulas take unstruc-
tured sets of bits. First-order formulas take first-order
structures.

As long as type-casting among these different representa-
tions is “easy” in the context of the complexity problem
we are considering, we can deal with any of these rep-
resentations. If pressed, we can say that we are always
dealing with strings.

With first-order structures, we pick a natural way to en-
code each structure � � STRUCfin � � � as a binary strings
bin � � � .

Example:

� binary strings: bin � � � � � �

� graphs:
� � � ����� %�% % � � 
��� � � �	� �

bin � � � � 
 � � 
 � � %�% % 
   � � � � % %�% ��
���  � � %�% %���
��� 
� pair of numbers: 
�� � % %�% 
�� �� � � %�% % ��� 
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Theorem 19.2 FO � L � DSPACE � 	�
��� �

Proof:

Given: 	 � � ��� � � �"!�� � ��������"!�� ��� �
	 ,

we build a DSPACE � 	 
��� � TM � such that

� � � 	 � � � bin � � ��� � �

We use induction on # , the number of quantifier pairs.

Base case: # �  .
	 � � ��� �	� � or another atomic predicate: Look up the
right bit.

	 � � � � or another numerical predicate: Do the calcu-
lation with the given values.
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Inductive step:

	�� � ������� � �"!���� � ������"!�� ��� �
	

Note that if other variables like � � or � � appear in 	 they
must be replaced by particular values.

By the inductive hypothesis, there is a logspace TM � � ,
� � � 	 � � � � � bin � � ��� � �

We modify � � by adding
��� 	 
� �
	 worktape cells.

Worktape of � : � �
� �� �� 
 � � ��

� �� �� �� 
��� ��
Worktape of � �

� cycles through all values of � � until it finds one such
that for all � � , � � accepts. �

A Java program can easily be written to test whether � � �
	 . It has nested for loops, one for each quantifier. Since
it uses only a constant number of variables of 	 
��� bits
each, it represents a deterministic logspace algorithm.
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CMPSCI 601: Second-Order Logic Lecture 19

Second-order logic consists of first-order logic, plus new
relation variables over which we may quantify.

�"! ��� � 	

For all choices of the � -ary relation � , 	 holds.

In a finite model with a universe of size � , a first-order
variable represents the name of an element of the uni-
verse, which is

� 	�
� �
	 bits. A unary second-order vari-
able � � � � represents a property which each element of
the domain has or doesn’t have, which is � bits. And a# -ary relation � � � � ��% %�% � � � � requires � � bits to specify,
because it is true or false for each # -tuple of domain ele-
ments.

SO is the set of second-order expressible boolean queries.

SO � is the set of second-order existential boolean queries,
where all the second-order quantifiers are existential.
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Graph 3-Colorability is in SO � :

�
3-color

� � ��� � � � ��� � � ��� � � � �"!�� � � ��� � � � ) � � � �*) � � � ���
� �"!�� � � � � � ��� ���

	 �
� � � � � � ��� ��� �
	 ��� � � �*� � ��� � � �
	 � � � � �*� � ��� ����� �
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SAT is the set of boolean formulas in conjunctive normal
form (CNF) that admit a satisfying assignment.

�
SAT

� � � � � � � ! � � � � � � � � � � � �
��� � � � � �*� � � � � � ) ��� � � � � �*� 	 � � � � ���

� � � � � “ � is a clause; otherwise � is a variable.”
� � � � � � � “Variable � occurs positively in clause � .”
� � � � � � � “Variable � occurs negatively in clause � .”

	 � � � � ) � � ) ��� ��� � � � ) � � ) ��� � � � � � ) � � ) ��� �

2

3

P

N
t

t

2

3

t 1

1
x

x

x

9



CLIQUE is the set of pairs � � ��#�� such that
�

is a graph
that has a complete subgraph of size # .

Let Inj ��� � mean that � is an injective (one-to-one) func-
tion. Being an injective function is a first-order definable
property of a binary relation:

Inj ��� � � �"!�� � � ��� � � � � � ��� � � � � � �

�
CLIQUE

� � ��� � % Inj ��� ��� � !�� � � ��� � �� � � � � � ��� # � � ��� ��� # �
� � � � ��� ���

We could name a particular set of vertices with a unary
relation, but the injective function lets us easily say that
the set has size exactly # .
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Theorem 19.3 (Fagin’s Theorem) NP is equal to the set
of existential, second-order boolean queries, NP � SO � .

Proof: NP � SO � : We are given a second-order exis-
tential sentence

� � � ��� ���� � % % % � � � ���� �
	 � � � � �

We build an NP machine � such that for every � �
STRUCfin � � � ,

� � � � � � � bin � � � � � � (19.4)
� � STRUCfin ��� � , � � � � � � � .
� nondeterministically writes down a binary string of
length � ��� representing � � , and similarly for � � through
� � .

� � � � � � � � � � � � %�% % � � � �
� accepts iff � � � � 	 .

Since FO � L, as we showed earlier this lecture, we can
test whether � � � � 	 in logspace and so certainly in NP.
Thus Equivalence 19.4 holds.
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NP � SO � : Let � be an NTIME � � � � one-tape TM.

We will define an SO � sentence,
� � � � � ���� %�% % � ���� ��� � � � 	 (19.5)

meaning, “There exists an accepting computation � � �
of � .” The main work will be defining the first-order
part 	 .

We will show that:

� � � � � � � bin � � ��� � �

Remark 19.6 Assume that language has numeric rela-
tions: � � SUC and constants  � max refering to total or-
dering on the universe, its successor relation, the min-
imum and maximum elements in this ordering, respec-
tively.

Then 	 in Equation 19.5 can be made universal,
	 � �"!�� � � ��� ��� �
	 �

with 	 quantifier free.
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CMPSCI 601: Encoding � ’s Computation Lecture 19

Fix � , � � � � � � �

Possible contents of a computation cell for � :

� � ��� � � %�% % ��� � ��� 
 � � � � � ��� �

��� ��� � � %�% % � � � � � � ��% %�% �	� � � means that cell 	� at time 	� is sym-
bol � �

� � 	� � means that the 	� � ��
� step of the computation makes
nondeterministic choice “1”; otherwise it makes choice
“0”. (We have normalized � so that it chooses one bit
per step.)
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Space
0 1 	� � � � � � � � � �

Time  � � � ��� � � � � ��� � � ���� � ����� � � �
� � � � � � ��� � � ��� � � ���� � ����� � � �

... ... ... ... ...
	� 
 ��� 
 � 
�� � �

	� � � � � � � �
... ... ... ... ...� � � � � ��� � � � � ��� � � � ����� �

Accepting computation of � on input � � � � ��� � � ����

Note that we can tell whether the symbol � occurs legally
in this computation by looking at the symbols 
 ��� , 
 � ,
and 
�� , and consulting the state table of � .
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We now write a first-order sentence, 	 � � � � � , saying that
� � � codes a valid accepting computation of � .

	 � � � � � � � �

� � row 0 codes input bin � � �
� � �"! 	� � 	� � � �� � � � 	 � ��� � 	� � 	� �*� ��� � 	� � 	� ��� �
� � �"! 	� � (row � � � follows from row � via move

� � 	� � of � )
� � last row of computation is accept ID

� � � � � � � bin � � ��� � �

� � � � ���� � ���� ����� � � �� ��� � � � 	 �
� “ � an accepting compution: � (me) = 1”
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Checking the start configuration:

� � row 0 codes input bin � � �

For simplicity, we look at what happens when � has only
a single unary relation symbol, � , so the input is just a
binary string.

0 1 � � � � � � � �

� � � ��� � � � � ����� � ���� � ����� �

� � � �� � � � ��� � � � � � � � � � � � �  ��� � � � � � � � � �

� � � �  � � � � � 	 � 	 �
� 	 � �  � � � � � 	 � 	 �
� �"!&� �  � ��� ��� � � � � � 	 � � 	 �

� 	 � � � � � � � � 	 � � 	 ���
� �"! 	� � ��� � � � 	� � 	 �
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The most interesting case: �

We view the state table of � as a finite function, so that

� 
 ��� � 
 � � 
 � � � � �� �
means that the triple 
 ��� � 
 � � 
 � leads to � via move � of
� .

� � �
�"! 	� % 	� � max � �"! 	� % 	 � 	� � max �

�
�����

���
�
	
�
�
���
�������

� 	 � � � 	� � )

	 � � �
�
� 	� � ��� 	� � ) 	 � � 	 � 	� � 	� � ) 	 � �

�
� 	� � � � 	� � ) � � � 	� � 	� � � ���

Here 	
�

is 	 if � � � and it is the empty symbol if � �  .

� � � � � � � � � �
where � � and � � encode the same information when 	� � 
and max respectively. �

17



Theorem 19.7 (Cook-Levin Theorem)

SAT is NP-complete.

(This theorem was proved roughly simultaneously by Steve
Cook in the USA and Leonid Levin in the USSR, before
Fagin proved his theorem. We’ll prove Cook-Levin as a
corollary of Fagin’s Theorem, somewhat contrary to his-
tory. But note that the proof of Cook-Levin in Sipser, for
example, is almost the same as our proof of Fagin.)

Proof: Let � � NP. By Fagin’s theorem,

� � � � ��� � � � 

� � � � � ���� ����� � ���� ��� � � � �"! � � ��� � � � �
	 � 	� �

with 	 quantifier-free and CNF,

	 � 	� � � ��
��� �

�
� � 	� �

with each
�
� a disjunction of literals.
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Let � be arbitrary, with � � � � � � � .

Define a boolean formula 	 � � � as follows:

boolean variables:

� � ��� � � % % % ��� ��� � � � ��� � ��% % % ��� � � � � � ��� %�%�% ��� ��� � � %�% % ��� ��� � � � �

clauses:
�
� � 	� � � � � ��� %�% % � � � 	� � � � � �

� �� � 	� � is
�
� � 	� � with atomic numeric or input predicates,

� � 	� � , replaced by true or false according as they are true
or false in � . Occurrences of � � � 	� � , and

� � 	�� are consid-
ered boolean variables.

� � � � � ���� � ��� � ���� ��� � � � �"!�� � ����� ��� � ����� �
�
� � 	� �

	 � � � � �
�
� ���	��� � ��
�������

��
��� �

� �� � 	� �

� � � � � � � � � 	 � � � � SAT �
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Proposition 19.8

3-SAT � � 	 � CNF-SAT � 	 has � � literals per clause 


3-SAT is NP-complete.

Proof: Show SAT � 3-SAT.

Example:

� � ��� � ) � � ) ����� ) ��� �

� � � ��� � ) � � ) � � � � � � � ) � � ) � � � � � � � ) � � ) � � � �
� � � ) ��� ) � � � � � � � ) �	� ) � � �

Claim: � � SAT � � � � 3-SAT

In general, just do this construction for each clause in-
dependently, introducing separate dummy variables for
each cluase. The AND of all the new 3-variable clauses
is satisfiable iff the AND of all the old clauses is. �
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