CMPSCI 601: Recall From Last Time L ecture 19

Savitch’s Theorem: For s(n) > logn,
NSPACE[s(n)] C DSPACE[(s(n))’]

Immerman-Szelepcsényi Theorem: For s(n) >
logn,

NSPACE[s(n)] = c0o-NSPACE|s(n)]
Closure Theorem: Virtually all the classes we’ve con-
sidered are closed downward under logspace reductions.

Important Technical Fact:  Logspace reductions are
transitive, i.e.,if A< Band B < Cthen A <C.




CMPSCI 601: Finite Model Theory Lecture 19

Consider the input (the object we are working on) to be
a finite logical structure, e.g., a binary string, a graph, a
relational database, or whatever. Remember that a struc-
ture includes a list of the objects and lookup tables for all
the variables, constants, relations and functions.

Definition 19.1 FO is the set of first-order definable deci-
sion problems on finite structures. Let S C STRUCs;4(X].

S € FO Iff
S ={A € STRUCspX] | A ¢}, somepec L(X)M



Defining Addition in First-Order Logic:

Addition is a function from pairs of binary numbers to
binary numbers, that is, a map from structures of one vo-
cabulary to structures of another:

Q. : STRUC[S.5] — STRUC[Z,)

A a; Qs ... Qp_1 QA
B + by by ... b,_1 b,
S S1 82 ... Sp_1 Sy

C(i) = (37 > 9)(A(y) A B(I) A
(Vk.j > k> i)(A(E) V B(k)))

Q+(1) = AQ) © B(i) © C(i)

Q+(c) € FO

Each bit of the sum is definable by a first-order formula.



Structures and Strings:

Our computational models act on various different data
structures. Turing machines take strings, usually binary
strings, as input. Propositional formulas take unstruc-
tured sets of bits. First-order formulas take first-order
structures.

As long as type-casting among these different representa-
tions is “easy” in the context of the complexity problem
we are considering, we can deal with any of these rep-
resentations. If pressed, we can say that we are always
dealing with strings.

With first-order structures, we pick a natural way to en-
code each structure A € STRUCg;,|X] as a binary strings
bin(A).

Example:

e binary strings: bin(A,) = w
e graphs: G = ({1,...,n}, E,s,t)
bln(G) = a11a12--.AppS1S9 . - . Slogntl . tlogn

° pair of numbers: aq; . .. a1,b11 ... b1p
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Theorem 19.2 FO C L = DSPACE|logn]

Proof:
Given: ¢ = (3z1)(Vza) - - - (Vzop )10,

we build a DSPACE/|logn] TM M such that

AEo & M(bin(A)) =1

We use induction on k, the number of quantifier pairs.

Base case: k£ = 0.

¢ = E(s,t) or another atomic predicate: Look up the
right bit.

¢ = s < t or another numerical predicate: Do the calcu-
lation with the given values.



Inductive step:

o = (3w3)(Vay) - (Vo)W

Note that if other variables like 1 or x5 appear in ) they
must be replaced by particular values.

By the inductive hypothesis, there is a logspace TM M,
AE ¢ & M'(bin(A)) =1

We modify M’ by adding 2[logn | worktape cells.

Worktape of M: X1 X9 Worktape of M’

" logn]  [logn]

M cycles through all values of x; until it finds one such
that for all x4, M’ accepts. [

A Java program can easily be written to test whether A =
@. Ithas nested f or loops, one for each quantifier. Since
It uses only a constant number of variables of logn bits
each, it represents a deterministic logspace algorithm.



CMPSCI 601 Second-Order Logic Lecture 19

Second-order logic consists of first-order logic, plus new
relation variables over which we may quantify.

(VA" )¢
For all choices of the r-ary relation A, ¢ holds.

In a finite model with a universe of size n, a first-order
variable represents the name of an element of the uni-
verse, which is [logn| bits. A unary second-order vari-
able A(x) represents a property which each element of
the domain has or doesn’t have, which is n bits. And a
k-ary relation B(z1,...,x;) requires n* bits to specify,
because it is true or false for each k-tuple of domain ele-
ments.

SO is the set of second-order expressible boolean queries.

SO4d s the set of second-order existential boolean queries,
where all the second-order quantifiers are existential.



Graph 3-Colorability is in SO4:

Ppue = (ARY)(IYV)(AB)(V2)[(R(2) V Y (2) V B(x))
A (Y )(E(x y) =




SAT is the set of boolean formulas in conjunctive normal
form (CNF) that admit a satisfying assignment.

d,, = (ASH(Vt)(3z)(C(t) —
(P(t,x) NS(z)) V (N(t,z) A —S(x)))

C(t) = “tisa clause; otherwise ¢ is a variable.”
P(t,z) = “Variable x occurs positively in clause ¢.”
N(t,x) = *“Variable z occurs negatively in clause ¢.”

© = (5171\/33—2\/5133)/\(1171\/5172\/27—3)/\(3}'—1\/172\/27—3)

-
-
L.
-
-




CLIQUE is the set of pairs (G, k) such that G is a graph
that has a complete subgraph of size k.

Let Inj(f) mean that f is an injective (one-to-one) func-
tion. Being an injective function is a first-order definable
property of a binary relation:

Inj(f) = (Vay)(f(z) = fly) = z=y)

Poge = (F1INJ(f))(Vzy)((z # y A flz) < kA fly) < k)
—  E(z,y))

We could name a particular set of vertices with a unary
relation, but the injective function lets us easily say that
the set has size exactly k.
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Theorem 19.3 (Fagin’s Theorem) NP is equal to the set
of existential, second-order boolean queries, NP = SO4.

Proof: NP O SOd:. We are given a second-order exis-
tential sentence

®=3RY)...AR})Y € L(X)
We build an NP machine NN such that for every A €
STRUCi X],
AP < N(bin(4)) =1 (19.4)
A e STRUCﬁn[E}, n = |A|.

N nondeterministically writes down a binary string of
length n'! representing R, and similarly for R, through
Ry.

.A, — (.A, Rl,RQ,...,Rk)

N accepts iff A" = 1.

Since FO C L, as we showed earlier this lecture, we can
test whether A’ |= 1 in logspace and so certainly in NP.
Thus Equivalence 19.4 holds.
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NP C SO3: Let N be an NTIME[n*] one-tape TM.
We will define an SO sentence,
® = (3CE...C2%H ANy (19.5)

meaning, “There exists an accepting computation C, A
of N.” The main work will be defining the first-order

part .
We will show that:

AE® < N(bin(4d) =1

Remark 19.6 Assume that language has numeric rela-
tions: <, SUC and constants 0, max refering to total or-
dering on the universe, its successor relation, the min-
Imum and maximum elements in this ordering, respec-
tively.

Then ¢ Iin Equation 19.5 can be made universal,

p = (Vor---az)y,
with v quantifier free.
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CMPSCI 601: Encoding N’s Computation Lecture 19

Fix A, n=|A]

Possible contents of a computation cell for V:
F:{’Yo,...,’yg_l}:(Q X E)UZ

Ci(s1,..., Sk t1,...,tr) meansthat cell s attime ¢ is sym-
bol Vi

A(t) means that the ¢ + 1% step of the computation makes
nondeterministic choice “1”; otherwise it makes choice
“0”. (We have normalized N so that it chooses one bit
per step.)
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Space
0 1 5 n—1mn nF—1] A
Time 0 <Q(), 'w0> w1 s Wp—1 LI - LI (5()
1wy (g1, wr) Wp—1 W --- U 01
t a_{agla; 01
t+1 b Ot41
n*—1| (g, 1) U oo U

Accepting computation of N on input wowy - - - wy,_1

Note that we can tell whether the symbol b occurs legally
In this computation by looking at the symbols a_4, ay,
and a1, and consulting the state table of V.
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We now write a first-order sentence, ¢(C', A), saying that
C, A codes a valid accepting computation of V.

o = aANB AN

row 0 codes input bin(A)

(Vg, t,i 7 ])(_'(CZ<§>E) N Cj(gaa))
(V¢)(row ¢ + 1 follows from row ¢ via move A(t) of N)

SS9
1]

last row of computation is accept ID
AE® < N(bin(4) =1

¢ = ICFFCT--- O AM(p)

“4 an accepting compution: N(me) = 1”
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Checking the start configuration:
a = row 0 codes input bin(.A)

For simplicity, we look at what happens when X has only

a single unary relation symbol, R, so the input is just a
binary string.

‘<QO7wO> wy cr Wp—q L o--- | | ‘

Y =0; 11 =1; 72 = L; v3 = {qo,0); 74 = {qo, 1)

Q
1]

R(0) — C4(0,0)
A =R(0) — Cs(0,0)
A (Vi > 0)(R(i) — C1(0i,0)
A =R(i) — Cy(0i,0))
A (V5 > n)Cs(3,0)
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The most interesting case: n

We view the state table of IV as a finite function, so that

<a_1, g, ay, 6> ﬂ> b

means that the triple a_1, ag, a; leads to b via move ¢ of
N.

m =
(VE.t < max)(V5.0 < 5 < max)

A (SPAR) YV

<a—1,a0,a1,5>ﬂ>b

—C,_(5—1,t) V =Cyy(5,1) V =Cy, (5+1,t) V Cy(5,t+1))
Here —° is — if § = 1 and it is the empty symbol if § = 0.

n o= 1 NmAn

where ny and n, encode the same information when s = 0
and max respectively. [
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Theorem 19.7 (Cook-Levin Theorem)
SAT is NP-complete.

(This theorem was proved roughly simultaneously by Steve
Cook in the USA and Leonid Levin in the USSR, before
Fagin proved his theorem. We’ll prove Cook-Levin as a
corollary of Fagin’s Theorem, somewhat contrary to his-
tory. But note that the proof of Cook-Levin in Sipser, for
example, is almost the same as our proof of Fagin.)

Proof. Let B € NP. By Fagin’s theorem,

B={A]|AkEo

® = (3C3 - O AV ) (a)

with v quantifier-free and CNF,

with each 77 a disjunction of literals.
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Let A be arbitrary, with n = ||.A].

Define a boolean formula ¢(.A) as follows:

boolean variables:

Ciler, ... ean), Aler, ..., er), i=1,...,9,€e1,...,e9 € |A|

clauses:
Ti(e), j=1,...,recl|Al

T7(e) is Tj(e) with atomic numeric or input predicates,
R(e), replaced by true or false according as they are true
or false in A. Occurrences of C;(¢), and A(e) are consid-
ered boolean variables.

S)
Il

(CE* -+ G A (V) A Ti(3)

A A Te)

e1,...erc Al j=1 7

pS
=
I

Ae€B & A= & ©(A) € SATH
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Proposition 19.8
3-SAT = {p € CNF-SAT | ¢ has < 3 literals per clause}

3-SAT Is NP-complete.

Proof: Show SAT < 3-SAT.

Example:

C = (UiVLV VL)

C'= (U1 VU Vd) A (di VAV dy) A (da V Ly V d3) A
(ds V U5 V ds) A (do V Lg V £r)

Claim: C € SAT & C' € 3-SAT

In general, just do this construction for each clause in-
dependently, introducing separate dummy variables for
each cluase. The AND of all the new 3-variable clauses
Is satisfiable iff the AND of all the old clauses is. [
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