CMPSCI 601:

Def: The **primitive recursive functions**, **PrimRecFcns**, is the smallest class of functions containing the Initial functions and closed under Composition and Primitive Recursion.

Initial functions:

$$\begin{aligned} \zeta() &= 0\\ \sigma(x) &= x + 1\\ \pi_i^n(x_1, \dots, x_n) &= x_i, \quad n = 1, 2, \dots, \quad 1 \le i \le n\\ \text{Composition:} \quad a_i : \mathbf{N}^k \to \mathbf{N}, 1 \le i \le m; : h : \mathbf{N}^m \to \mathbf{N}. \end{aligned}$$

Composition: $g_i : \mathbf{N}^k \to \mathbf{N}, 1 \leq i \leq m; ; h : \mathbf{N}^m \to \mathbf{N};$

$$\mathcal{C}(h;g_1,\ldots,g_m)(x_1,\ldots,x_k) \;=\; h(g_1(\overline{x}),\ldots,g_m(\overline{x}))$$

Primitive Recursion: $g : \mathbf{N}^k \to \mathbf{N}; h : \mathbf{N}^{k+2} \to \mathbf{N}:$ $f(n, y_1, \ldots, y_k) = \mathcal{P}(g, h)(n, y_1, \ldots, y_k),$ given by:

 $f(0, y_1, \dots, y_k) = g(y_1, \dots, y_k) \ f(n+1, y_1, \dots, y_k) = h(f(n, y_1, \dots, y_k), n, y_1, \dots, y_k)$

Facts and Exercises:

- 1. A function is primitive recursive iff it is computable in Bloop.
- 2. Every primitive recursive function is total recursive.
- 3. There is a total recursive function that is not primitive recursive.
- 4. There are primitive recursive functions that encode and decode sequences of integers by single integers.

Using sequences, primitive recursive functions are powerful enough to talk about Turing machines:

Primitive Recursive COMP Theorem: [Kleene] Let COMP(n, x, c, y) mean $M_n(x) = y$, and that c is M_n 's complete computation on input x. Then COMP is a Primitive Recursive predicate.

Proof: We will encode TM computations:

$$c = \operatorname{Seq}(\operatorname{ID}_0, \operatorname{ID}_1, \ldots, \operatorname{ID}_t)$$

Where each ID_i is a sequence number of tape-cell contents:

$$\mathrm{ID}_i = \mathrm{Seq}(\triangleright, a_1, \ldots, a_{i-1}, [\sigma, a_i], a_{i+1}, \ldots, a_r)$$

$$\begin{split} \operatorname{COMP}(n, x, c, y) &\equiv \\ \operatorname{START}(\operatorname{Item}(c, 0), x) &\wedge \operatorname{END}(\operatorname{Item}(c, \operatorname{Length}(c) - 1), y) &\wedge \\ (\forall i < \operatorname{Length}(c))\operatorname{NEXT}(n, \operatorname{Item}(c, i), \operatorname{Item}(c, i + 1)) \end{split}$$

Definition 12.1 The general recursive functions are the set of partial functions obtained by closing the initial functions under composition and the μ -operator. We define μ {x : f(x, y) = 0} for an input y to be the least x such that f(x, y) = 0, if one exists, or otherwise undefined.

Facts and Exercises:

- The general recursive functions are the closure of the p.r. functions under the μ -operator.
- A partial function is general recursive iff it is computable in Floop, the language obtained from Bloop by adding a while statement.
- A partial function is general recursive iff it is partial recursive (computable by some TM).
- A total function is partial recursive iff it is in **DTIME**[f] for some primitive recursive function f.

Theorem 12.2 *The following problems are decidable in polynomial time.*

EmptyNFA = { $N \mid N \text{ is an NFA}; \mathcal{L}(N) = \emptyset$ } $\Sigma^* DFA = {D \mid D \text{ is a DFA}; \mathcal{L}(D) = \Sigma^*$ } MemberNFA = { $\langle N, w \rangle \mid N \text{ is an NFA}; w \in \mathcal{L}(N)$ } EqualDFA = { $\langle D_1, D_2 \rangle \mid D_1, D_2 DFAs; \mathcal{L}(D_1) = \mathcal{L}(D_2)$ } EmptyCFL = { $G \mid G \text{ is a CFG}; \mathcal{L}(G) = \emptyset$ } MemberCFL = { $\langle G, w \rangle \mid G \text{ is a CFG}; w \in \mathcal{L}(G)$ } EmptyNFA = {N : No start-final path in graph of N} $\Sigma^* DFA = \{D \mid D \text{ is a DFA}; \mathcal{L}(D) = \Sigma^*\}$ $D \in \Sigma^* DFA \Leftrightarrow \overline{D} \in EmptyNFA$

MemberNFA = { $\langle N, w \rangle \mid N$ is an NFA; $w \in \mathcal{L}(N)$ }

Convert to another reachability problem:

$$\begin{array}{c|c} 0 & 1 \\ 0 & 1 \\ 0,1 \\ 0,1 \end{array} \begin{array}{c} 0,1 \\ 2 \\ 0,1 \end{array} \begin{array}{c} 0,1 \\ 3 \\ 0,1 \\ 4 \end{array} \end{array}$$

EmptyCFL HW#4

MemberCFL = $\{\langle G, w \rangle \mid G \text{ is a CFG}; w \in \mathcal{L}(G)\}$

CYK Dynamic Programming Algorithm:

- 1. Assume G in Chomsky Normal Form: $N \to AB$, $N \to a$.
- 2. Input: $w = w_1 w_2 \dots w_n$; G with nonterminals S, A, B, \dots
- 3. $N_{ij} \equiv \begin{cases} 1 & \text{if } N \stackrel{\star}{\rightarrow} w_i \cdots w_j \\ 0 & \text{otherwise} \end{cases}$
- 4. return (S_{1n})

 $N_{i,i} =$ **if** (" $N \rightarrow w_i$ " $\in R$) then 1 else 0

$$N_{i,j} = \bigvee_{N \to AB^{"} \in R} (\exists k) (i \leq k < j \land A_{i,k} \land B_{k+1,j})$$

Theorem 12.3 The following problem is co-r.e.-complete:

 Σ^{\star} CFL = {G | G is a CFG; $\mathcal{L}(G) = \Sigma_G^{\star}$ }

Proof: [J. Hartmanis, Neil's advisor]

 $\overline{\Sigma^* CFL} \in \mathbf{r.e.}$:

Input: G **Define:** $\Sigma_G^{\star} = \{w_0, w_1, w_2, ...\}$ 1. **for** i := 0 to ∞ {

2. **if** $w_i \notin \mathcal{L}(G)$, **then return**(1)}

(We use the the CYK algorithm for each MemberCFL check.)

Clearly this returns 1 iff $G \in \overline{\Sigma^* CFL}$.

Proposition 12.4 *EMPTY is co-r.e. complete, where,*

 $EMPTY = \{n \mid W_n = \emptyset\}$

Proof: Show NON-EMPTY to be r.e.-complete: show it r.e. and reduce K to it. (Good practice!)

Claim 12.5 *EMPTY* $\leq \Sigma^*$ CFL.

Corollary 12.6 Σ^* CFL is co-r.e. complete and thus not recursive.

How can we prove the Claim? We need to define: $g : \mathbf{N} \to \{0, 1\}^*$,

 $n \in \text{EMPTY} \quad \Leftrightarrow \quad g(n) \in \Sigma^* \text{CFL}$

$$(\forall x)M_n(x) \neq 1 \quad \Leftrightarrow \quad \mathcal{L}(g(n)) = \Sigma_n^*$$

 M_n has no accepting computations $\Leftrightarrow \mathcal{L}(g(n)) = \Sigma_n^*$

We need to represent *entire computations* of TM's by strings. Assume that M_n is a one-tape machine.

We first defined a string called an **Instantaneous De**scription or **ID** of a computation of M_n :

 M_n has alphabet $\{0, 1\}$, states $\{\hat{0}, \hat{1}, \dots, \hat{q}\}$ where $\hat{0}$ is the halting state and $\hat{1}$ is the start state.

$$ID_0 = \hat{1} \triangleright w_1 w_2 \cdots w_r \sqcup$$

Suppose M_n in state $\hat{1}$ looking at a ">" writes a ">" changes to state $\hat{3}$, and moves to the right.

$$\mathbf{ID}_1 \quad = \quad \triangleright \hat{\mathbf{3}} \ w_1 \ w_2 \ \cdots \ w_r \ \sqcup$$

In general the ID shows the tape up to and including the first blank after the last non-blank, with a character for the state inserted just left of the head position. It is easy to tell whether a string is a valid ID.

$$\begin{aligned} \operatorname{YesComp}(n) &= \\ \left\{ \operatorname{ID}_0 \# \operatorname{ID}_1^R \# \operatorname{ID}_2 \# \operatorname{ID}_3^R \# \cdots \# \operatorname{ID}_t \mid \operatorname{ID}_0 \cdots \operatorname{ID}_t \begin{array}{l} \operatorname{accepting} \\ \operatorname{comp of} M_n \end{array} \right\} \end{aligned}$$

Note that ID_0 can have any string in $\{0, 1\}^*$ as the input string. We write every other ID *backwards* to allow easy checking by a CFL.

Lemma 12.7 For each n, $\overline{\text{YesComp}(n)}$ is a CFL.

Furthermore, there is a function $g \in F(\mathbf{L})$, for all n, g(n) codes a context-free grammar and

$$\mathcal{L}(g(n)) = \overline{\operatorname{YesComp}(n)}$$

 $\Sigma_n = \{0, 1, \triangleright, \sqcup, \#, \hat{0}, \hat{1}, \ldots, \hat{q_n}\}$ where M_n has q_n states.

 $n \in \operatorname{EMPTY} \quad \Leftrightarrow \quad \overline{\operatorname{YesComp}(n)} = \Sigma_n^\star \quad \Leftrightarrow \quad g(n) \in \Sigma^\star \operatorname{CFL}$

The grammar must generate every string that does *not* code an accepting computation of M_n .

Proof:

$$\overline{\text{YesComp}(n)} = U(n) \cup A(n) \cup D(n) \cup Z(n)$$

 $U(n) = \{ w \in \Sigma^* \mid w \text{ not in form } \mathrm{ID}_0 \# \cdots \# \mathrm{ID}_t \}$

 $A(n) = \{ w \in \Sigma^* \mid w \text{ doesn't start with an initial ID of } M_n \}$

 $D(n) = \{ w \in \Sigma^{\star} \mid (\exists i) (\mathrm{ID}_{i+1} \text{ doesn't follow from } \mathrm{ID}_i \}$

$$Z(n) = \{ w \in \Sigma^* \mid w \text{ doesn't end with } \hat{0} \triangleright 1 \sqcup \}$$

U(n), A(n), and Z(n) are regular languages. To be in D(n), a string must contain a letter in ID_{i+1} that does not follow from the corresponding place in ID_i by the rules of M_n – either the tape changes away from the head or changes the wrong way at the head. A PDA could guess and verify the point at which this happens.

Thus, $g : \text{EMPTY} \leq \Sigma^* \text{CFL}$

$$\begin{split} n \in \mathrm{EMPTY} \ \Leftrightarrow \ \overline{\mathrm{YesComp}(n)} = \Sigma_n^\star \\ \Leftrightarrow \ g(n) \in \Sigma^\star \mathrm{CFL} \end{split}$$

