
CMPSCI 601: Recall From Last Time Lecture 12

Def: The primitive recursive functions, PrimRecFcns,
is the smallest class of functions containing the Initial
functions and closed under Composition and Primitive
Recursion.

Initial functions:������� �
� �
	���� 	 �
���� ��	�������������	 � ��� 	 � � � � ��� �!��������� � " #$" �
Composition: % �$& N ' (N

�)� " # " * + +-, & N . (
N:/ ��,0+ % �1��������� % .

�-��	0������������	
'
� � ,0� % �1� 	��-���2����� % .

� 	3�4�

Primitive Recursion: % & N ' (N
+ , & N '6587 (N:9 �:�;��<=�����������6<

'
��� > � % �?,@� �:�A��<B���������1<

'
�
, given by:9 �C�D�6<=���������6<

'
� � % ��<=���2�������6< '

�
9 �:� ���6<=���������6<

'
� � ,0� 9 �:�A�6<B�1�����2����<

'
�-���;�6<=�����������6<

'
�

1

Facts and Exercises:

1. A function is primitive recursive iff it is computable
in Bloop.

2. Every primitive recursive function is total recursive.

3. There is a total recursive function that is not primitive
recursive.

4. There are primitive recursive functions that encode
and decode sequences of integers by single integers.

2

Using sequences, primitive recursive functions are pow-
erful enough to talk about Turing machines:

Primitive Recursive COMP Theorem: [Kleene]

Let COMP
���A��	 � � �6< � mean

� � ��	���� <
, and that

� is
� � ’s complete computation on input

	
.

Then COMP is a Primitive Recursive predicate.

Proof: We will encode TM computations:

� �
Seq

�
ID � � ID �1���������

ID � �
Where each ID � is a sequence number of tape-cell con-
tents:

ID � � Seq
��� �����1����������� �
	 ����� � �� ��� ��� � 5

��������������� �

COMP
�:�;��	 � � �1< � �

START
�
Item

� � ��� �-��	�� �
END

�
Item

� � � Length
� � ��� � �-��< � �

����#��
Length

� � �4� NEXT
�:�;�

Item
� � �6# �-� Item

� � ��#� � �4�
�

3

Definition 12.1 The general recursive functions are
the set of partial functions obtained by closing the initial
functions under composition and the � -operator. We de-
fine ��� 	 & 9 �
	 �6< � � ���

for an input
<

to be the least
	

such that
9 ��	 ��< � � �

, if one exists, or otherwise unde-
fined.

�

Facts and Exercises:

� The general recursive functions are the closure of the
p.r. functions under the � -operator.

� A partial function is general recursive iff it is com-
putable in Floop, the language obtained from Bloop
by adding a while statement.

� A partial function is general recursive iff it is partial
recursive (computable by some TM).

� A total function is partial recursive iff it is in DTIME
� 9 �

for some primitive recursive function
9

.

4

Theorem 12.2 The following problems are decidable in
polynomial time.

EmptyNFA
� ��� ��� is an NFA

+�� � � ��� � �
�	�

DFA
� ��
 ��
 is a DFA

+�� �
 ��� �� �

MemberNFA
� ����� ��� � ��� is an NFA

+� � � � � � �
EqualDFA

� ����
 �1�
 7
� ��
 �1�
 7 DFAs

+�� �
 � ��� � �
 7
� �

EmptyCFL
� ��� ��� is a CFG

+�� � � ��� � �

MemberCFL
� ����� ��� � ��� is a CFG

+�� � � � � � �

5

EmptyNFA
� ��� & No start-final path in graph of � �

�	�
DFA

� ��
 ��
 is a DFA
+�� �
 ��� �	� �

 � �	�
DFA �
 �

EmptyNFA

MemberNFA
� ����� ��� � ��� is an NFA

+ � � � � � � �

Convert to another reachability problem:

40 1 2 3

0,1

1 0,1 0,1 0,1

6

EqualDFA
� ����
 ���
 7

� � � �
 � ��� � �
 7
� �

��
 ���
 7
� �

EqualDFA �
�
 ���
 7

��� �
 ���
 7
�

�
EmptyNFA

EmptyCFL � � � �

7

MemberCFL
� ����� � � � ��� is a CFG

+�� � � � � � �

CYK Dynamic Programming Algorithm:

1. Assume � in Chomsky Normal Form: � (� � ,
� (�

.

2. Input:
� � � ���

7
����� � � ; � with nonterminals� � � � � �������

3. � ��� � ����
���
�

if � �(� �
	�	�	 � ��
otherwise

4. return
� � � � �

� �� � �
if

�
“ � (� � ” � � �

then
�

else
�

� ���� � �
“ ������� ” ���

����� �-��# " � � � � �� '
� � '65

� �� �

8

CMPSCI 601: Today’s Main Theorem Lecture 12

Theorem 12.3 The following problem is co-r.e.-complete:

� �
CFL

� � � ��� is a CFG
+ � � � ��� �� � �

Proof: [J. Hartmanis, Neil’s advisor]

� �
CFL

�
r.e.:

Input: �
Define:

� � � � � � � ��� �1� �
7
�2����� �

1. for
& � �

to � �
2. if

� ���� � � � �
, then return(1)

�

(We use the the CYK algorithm for each MemberCFL
check.)

Clearly this returns 1 iff � � � �
CFL.

9

Proposition 12.4 EMPTY is co-r.e. complete, where,

EMPTY
� � � � � � � � �

Proof: Show NON-EMPTY to be r.e.-complete: show it
r.e. and reduce � to it. (Good practice!)

�

Claim 12.5 EMPTY
" � �

CFL.

Corollary 12.6
� �

CFL is co-r.e. complete and thus not
recursive.

How can we prove the Claim?

We need to define: % & N (� �D��� � � ,
� �

EMPTY � % �:� � � � �
CFL

� � 	�� � � �
	�� �� �
�

� � % �:� �4��� � � �
� � has no accepting computations �

� � % �:� �4��� � � �

10

We need to represent entire computations of TM’s by
strings. Assume that

� � is a one-tape machine.

We first defined a string called an Instantaneous De-
scription or ID of a computation of

� � :
� � has alphabet � �D��� � , states �

��D� ������������ �� � where
��

is the
halting state and

��
is the start state.

ID � � �� � � � �
7 	 	 	 � ���

Suppose
� � in state

��
looking at a “

�
” writes a “

�
” changes

to state
��
, and moves to the right.

ID
� � � �� � � �

7 	�	 	 � ���

In general the ID shows the tape up to and including the
first blank after the last non-blank, with a character for
the state inserted just left of the head position. It is easy
to tell whether a string is a valid ID.

11

YesComp
�:� �

=

����
��� ID � � ID � � � ID 7 � ID �� � 	�	�	 � ID � � ID � 	�	 	 ID � accepting

comp of
� �

� ���
���

Note that ID � can have any string in � �D��� ��� as the input
string. We write every other ID backwards to allow easy
checking by a CFL.

Lemma 12.7 For each
�

, YesComp
��� �

is a CFL.

Furthermore, there is a function % � � �
L
�
, for all

�
, % �:� �

codes a context-free grammar and

� � % �:� �4� �
YesComp

�:� �

� � � � �D����� � � � � � � ��!� ��������2��� �� � � where
� � has � � states.

� �
EMPTY � YesComp

��� ��� �� � � % �:� � � � �
CFL

The grammar must generate every string that does not
code an accepting computation of

� � .
12

Proof:

YesComp
�:� � � � �:� � � � �:� � �
 �:� � � � �:� �

� �:� � � � � � �	� � � not in form ID � � 	�	�	 � ID � �

� �:� � � � � � �	� � � doesn’t start with an initial ID of
� � �

 �:� � � � � � �	� � � �B# � �
ID � 5

�
doesn’t follow from ID � �

� �:� � � � � � �	� � � doesn’t end with
�� � � � �

� �:� �
, � �:� �

, and
� ��� �

are regular languages. To be in

 �:� �

, a string must contain a letter in ID � 5
�

that does not
follow from the corresponding place in ID � by the rules
of

� � – either the tape changes away from the head or
changes the wrong way at the head. A PDA could guess
and verify the point at which this happens.

�

13

Thus, % & EMPTY
" � �

CFL

� �
EMPTY � YesComp

�:� ��� �� �
� % ��� ��� � �

CFL

�

14

co-r.e.
complete

Arithmetic Hierarchy r.e.

completer.e.co-r.e.

Polynomial-Time Hierarchy NP
complete

co-NP
complete

co-NP NP

NP

U

co-NP

P

NC 2

log(CFL)

NC

NC

SAC

ThC

"truly feasible"

Regular

NSPACE[log n]

Logarithmic-Time Hierarchy AC

DSPACE[log n]

PSPACE

EXPTIME

Primitive Recursive

Recursive

1

0

1

0

15

