Def: The primitive recursive functions, PrimRecFens, is the smallest class of functions containing the Initial functions and closed under Composition and Primitive Recursion.

Initial functions:

$\zeta()=0$
$\sigma(x)=x+1$
$\pi_{i}^{n}\left(x_{1}, \ldots, x_{n}\right)=x_{i}, \quad n=1,2, \ldots, \quad 1 \leq i \leq n$
Composition: $\quad g_{i}: \mathbf{N}^{k} \rightarrow \mathbf{N}, 1 \leq i \leq m ; ; h: \mathbf{N}^{m} \rightarrow$ N:

$$
\mathcal{C}\left(h ; g_{1}, \ldots, g_{m}\right)\left(x_{1}, \ldots, x_{k}\right)=h\left(g_{1}(\bar{x}), \ldots, g_{m}(\bar{x})\right)
$$

Primitive Recursion: $\quad g: \mathbf{N}^{k} \rightarrow \mathbf{N} ; h: \mathbf{N}^{k+2} \rightarrow \mathbf{N}$: $f\left(n, y_{1}, \ldots, y_{k}\right)=\mathcal{P}(g, h)\left(n, y_{1}, \ldots y_{k}\right)$, given by:

$$
\begin{aligned}
f\left(0, y_{1}, \ldots y_{k}\right) & =g\left(y_{1}, \ldots, y_{k}\right) \\
f\left(n+1, y_{1}, \ldots y_{k}\right) & =h\left(f\left(n, y_{1}, \ldots, y_{k}\right), n, y_{1}, \ldots, y_{k}\right)
\end{aligned}
$$

Facts and Exercises:

1. A function is primitive recursive iff it is computable in Bloop.
2. Every primitive recursive function is total recursive.
3. There is a total recursive function that is not primitive recursive.
4. There are primitive recursive functions that encode and decode sequences of integers by single integers.

Using sequences, primitive recursive functions are powerful enough to talk about Turing machines:

Primitive Recursive COMP Theorem: [Kleene]

Let $\operatorname{COMP}(n, x, c, y)$ mean $M_{n}(x)=y$, and that c is M_{n} 's complete computation on input x.
Then COMP is a Primitive Recursive predicate.
Proof: We will encode TM computations:

$$
c=\operatorname{Seq}\left(\mathrm{ID}_{0}, \mathrm{ID}_{1}, \ldots, \mathrm{ID}_{t}\right)
$$

Where each ID_{i} is a sequence number of tape-cell contents:

$$
\mathrm{ID}_{i}=\operatorname{Seq}\left(\triangleright, a_{1}, \ldots, a_{i-1},\left[\sigma, a_{i}\right], a_{i+1}, \ldots, a_{r}\right)
$$

$\operatorname{COMP}(n, x, c, y) \equiv$

$$
\begin{aligned}
& \operatorname{START}(\operatorname{Item}(c, 0), x) \wedge \operatorname{END}(\operatorname{Item}(c, \operatorname{Length}(c)-1), y) \wedge \\
& (\forall i<\operatorname{Length}(c)) \operatorname{NEXT}(n, \operatorname{Item}(c, i), \operatorname{Item}(c, i+1))
\end{aligned}
$$

Definition 12.1 The general recursive functions are the set of partial functions obtained by closing the initial functions under composition and the μ-operator. We define $\mu\{x: f(x, y)=0\}$ for an input y to be the least x such that $f(x, y)=0$, if one exists, or otherwise undefined.

Facts and Exercises:

- The general recursive functions are the closure of the p.r. functions under the μ-operator.
- A partial function is general recursive iff it is computable in Floop, the language obtained from Bloop by adding a while statement.
- A partial function is general recursive iff it is partial recursive (computable by some TM).
- A total function is partial recursive iff it is in DTIME $[f]$ for some primitive recursive function f.

Theorem 12.2 The following problems are decidable in polynomial time.

EmptyNFA $=\{N \mid N$ is an NFA; $\mathcal{L}(N)=\emptyset\}$

$$
\Sigma^{\star} \mathrm{DFA}=\left\{D \mid D \text { is a DFA; } \mathcal{L}(D)=\Sigma^{\star}\right\}
$$

MemberNFA $=\{\langle N, w\rangle \mid N$ is an NFA; $w \in \mathcal{L}(N)\}$
EqualDFA $=\left\{\left\langle D_{1}, D_{2}\right\rangle \mid D_{1}, D_{2}\right.$ DFAs; $\left.\mathcal{L}\left(D_{1}\right)=\mathcal{L}\left(D_{2}\right)\right\}$
EmptyCFL $=\{G \mid G$ is a $C F G ; \mathcal{L}(G)=\emptyset\}$
MemberCFL $=\{\langle G, w\rangle \mid G$ is a $C F G ; w \in \mathcal{L}(G)\}$

EmptyNFA $=\{N:$ No start-final path in graph of $N\}$
 Σ^{\star} DFA $=\left\{D \mid D\right.$ is a DFA; $\left.\mathcal{L}(D)=\Sigma^{\star}\right\}$
 $D \in \Sigma^{\star}$ DFA $\Leftrightarrow \bar{D} \in$ EmptyNFA

MemberNFA $=\{\langle N, w\rangle \mid N$ is an NFA; $w \in \mathcal{L}(N)\}$

Convert to another reachability problem:

EqualDFA $=\left\{\left\langle D_{1}, D_{2}\right\rangle \mid \mathcal{L}\left(D_{1}\right)=\mathcal{L}\left(D_{2}\right)\right\}$
 $\left\langle D_{1}, D_{2}\right\rangle \in$ EqualDFA $\Leftrightarrow\left(\overline{D_{1}} \cap D_{2}\right) \cup\left(D_{1} \cap \overline{D_{2}}\right)$ \in EmptyNFA

EmptyCFL $H W \# 4$

MemberCFL $=\{\langle G, w\rangle \mid G$ is a CFG; $w \in \mathcal{L}(G)\}$

CYK Dynamic Programming Algorithm:

1. Assume G in Chomsky Normal Form: $N \rightarrow A B$, $N \rightarrow a$.
2. Input: $w=w_{1} w_{2} \ldots w_{n}$; G with nonterminals S, A, B, \ldots
3. $N_{i j} \equiv \begin{cases}1 & \text { if } N \stackrel{\text { 友 }}{ } w_{i} \cdots w_{j} \\ 0 & \text { otherwise }\end{cases}$
4. return $\left(S_{1 n}\right)$

$$
\begin{aligned}
& N_{i, i}=\text { if }\left(" N \rightarrow w_{i} " \in R\right) \text { then } 1 \text { else } 0 \\
& N_{i, j}=\underset{{ }^{\prime} N \rightarrow A B^{\prime} \in R}{\vee}(\exists k)\left(i \leq k<j \wedge A_{i, k} \wedge B_{k+1, j}\right)
\end{aligned}
$$

CMPSCI 601:	Today's Main Theorem	Lecture 12

Theorem 12.3 The following problem is co-r.e.-complete:

$$
\Sigma^{\star} \mathrm{CFL}=\left\{G \mid G \text { is a CFG; } \mathcal{L}(G)=\Sigma_{G}^{\star}\right\}
$$

Proof: [J. Hartmanis, Neil's advisor]
$\overline{\Sigma^{\star} \mathrm{CFL}} \in$ r.e.:

Input: G
Define: $\Sigma_{G}^{\star}=\left\{w_{0}, w_{1}, w_{2}, \ldots\right\}$

1. for $i:=0$ to $\infty\{$
2. \quad if $w_{i} \notin \mathcal{L}(G)$, then return(1)\}
(We use the the CYK algorithm for each MemberCFL check.)

Clearly this returns 1 iff $G \in \overline{\Sigma^{\star} \mathrm{CFL}}$.

Proposition 12.4 EMPTY is co-r.e. complete, where,

$$
E M P T Y=\left\{n \mid W_{n}=\emptyset\right\}
$$

Proof: Show NON-EMPTY to be r.e.-complete: show it r.e. and reduce K to it. (Good practice!)

Claim 12.5 EMPTY $\leq \Sigma^{\star} \mathrm{CFL}$.
Corollary $12.6 \Sigma^{\star} \mathrm{CFL}$ is co-r.e. complete and thus not recursive.

How can we prove the Claim?
We need to define: $g: \mathbf{N} \rightarrow\{0,1\}^{\star}$,

$$
\begin{array}{ccc}
n \in \mathrm{EMPTY} & \Leftrightarrow & g(n) \in \Sigma^{\star} \mathrm{CFL} \\
(\forall x) M_{n}(x) \neq 1 & \Leftrightarrow & \mathcal{L}(g(n))=\Sigma_{n}^{\star}
\end{array}
$$

M_{n} has no accepting computations $\quad \Leftrightarrow \quad \mathcal{L}(g(n))=\Sigma_{n}^{\star}$

We need to represent entire computations of TM's by strings. Assume that M_{n} is a one-tape machine.

We first defined a string called an Instantaneous Description or ID of a computation of M_{n} :
M_{n} has alphabet $\{0,1\}$, states $\{\hat{0}, \hat{1}, \ldots, \hat{q}\}$ where $\hat{0}$ is the halting state and $\hat{1}$ is the start state.

$$
\mathrm{ID}_{0}=\hat{1} \triangleright w_{1} w_{2} \cdots w_{r} \sqcup
$$

Suppose M_{n} in state $\hat{1}$ looking at a " \triangleright " writes a " \triangleright " changes to state $\hat{3}$, and moves to the right.

$$
\mathrm{ID}_{1}=\triangleright \hat{3} w_{1} w_{2} \cdots w_{r} \sqcup
$$

In general the ID shows the tape up to and including the first blank after the last non-blank, with a character for the state inserted just left of the head position. It is easy to tell whether a string is a valid ID.
$\operatorname{YesComp}(n)=$
$\left\{\mathrm{ID}_{0} \# \mathrm{ID}_{1}^{R} \# \mathrm{ID}_{2} \# \mathrm{ID}_{3}^{R} \# \cdots \# \mathrm{ID}_{t} \left\lvert\, \mathrm{ID}_{0} \cdots \mathrm{ID}_{t} \begin{array}{c}\text { accepting } \\ \text { comp of } M_{n}\end{array}\right.\right\}$

Note that ID_{0} can have any string in $\{0,1\}^{*}$ as the input string. We write every other ID backwards to allow easy checking by a CFL.

Lemma 12.7 For each $n, \overline{\operatorname{Yes} \operatorname{Comp}(n)}$ is a $C F L$.

Furthermore, there is a function $g \in F(\mathbf{L})$, for all $n, g(n)$ codes a context-free grammar and

$$
\mathcal{L}(g(n))=\overline{\operatorname{Yes} \operatorname{Comp}(n)}
$$

$\Sigma_{n}=\left\{0,1, \triangleright, \sqcup, \#, \hat{0}, \hat{1}, \ldots, \hat{q_{n}}\right\}$ where M_{n} has q_{n} states.

$$
n \in \mathrm{EMPTY} \quad \Leftrightarrow \quad \overline{\operatorname{Yes} \operatorname{Comp}(n)}=\Sigma_{n}^{\star} \quad \Leftrightarrow \quad g(n) \in \Sigma^{\star} \mathrm{CFL}
$$

The grammar must generate every string that does not code an accepting computation of M_{n}.

Proof:

$$
\overline{\operatorname{YesComp}(n)}=U(n) \cup A(n) \cup D(n) \cup Z(n)
$$

$$
U(n)=\left\{w \in \Sigma^{\star} \mid w \text { not in form } \mathrm{ID}_{0} \# \cdots \# \mathrm{ID}_{t}\right\}
$$

$A(n)=\left\{w \in \Sigma^{\star} \mid w\right.$ doesn't start with an initial ID of $\left.M_{n}\right\}$
$D(n)=\left\{w \in \Sigma^{\star} \mid(\exists i)\left(\mathrm{ID}_{i+1}\right.\right.$ doesn't follow from $\left.\mathrm{ID}_{i}\right\}$
$Z(n)=\left\{w \in \Sigma^{\star} \mid w\right.$ doesn't end with $\left.\hat{0} \triangleright 1 \sqcup\right\}$
$U(n), A(n)$, and $Z(n)$ are regular languages. To be in $D(n)$, a string must contain a letter in ID_{i+1} that does not follow from the corresponding place in ID_{i} by the rules of M_{n} - either the tape changes away from the head or changes the wrong way at the head. A PDA could guess and verify the point at which this happens.

Thus, g : EMPTY $\leq \Sigma^{\star} \mathrm{CFL}$

$$
\begin{aligned}
n \in \mathrm{EMPTY} & \Leftrightarrow \overline{\operatorname{YesComp}(n)}=\Sigma_{n}^{\star} \\
& \Leftrightarrow g(n) \in \Sigma^{\star} \mathrm{CFL}
\end{aligned}
$$

