CMPSCI 601: Recall From Last Time L ecture 12

Def. The primitive recursive functions, PrimRecFcns,
Is the smallest class of functions containing the Initial
functions and closed under Composition and Primitive
Recursion.

Initial functions:

¢0)=0
olx)=x+1
(X1, ..., xn) =x;, n=12...., 1<i<n

Composition: ¢;: N* = N,1<i<m; ;h:N" -
N:

C(h; g1, gm)(@1, - 21) = h1(Z), ..., gm(T))
Primitive Recursion: ¢ : N* — N; h : N*2 — N:
fnsyrs - uk) = Plg, h)(n, ys, - - - yx), given by:

fO,y1, - ye) = g(y1, -+ k)
f(n—|_17y17yk) — h(f<n7y17"'7yk)7n7y17"'7yk)

Facts and Exercises:

1. A function is primitive recursive iff it is computable
In Bloop.

2. Every primitive recursive function is total recursive.

3. There is a total recursive function that is not primitive
recursive.

4. There are primitive recursive functions that encode
and decode sequences of integers by single integers.

Using sequences, primitive recursive functions are pow-
erful enough to talk about Turing machines:

Primitive Recursive COMP Theorem: [Kleene]
Let COMP(n, z,c,y) mean M, (x) =y, and that
¢ Is M,,’s complete computation on input z.

Then COMP is a Primitive Recursive predicate.

Proof: We will encode TM computations:

¢ = Seq(IDy, IDy, . . ., 1D;)

Where each ID; is a sequence number of tape-cell con-
tents:

IDZ — Seq(D7 A1y - .-y Ai—1, [07 ai]) Aitly- - - a?‘)

COMP(n, z,c,y)

START(Item(c,0),2) A END(Item(c, Length(c) —1),y) A
(Vi < Length(c))NEXT (n, Item(c, i), Item(c,i + 1))

o

Definition 12.1 The general recursive functions are
the set of partial functions obtained by closing the initial
functions under composition and the p-operator. We de-
fine u{z : f(x,y) = 0} for an input y to be the least «
such that f(xz,y) = 0, if one exists, or otherwise unde-
fined. [

Facts and Exercises:
e The general recursive functions are the closure of the

p.r. functions under the p-operator.

e A partial function is general recursive iff it is com-
putable in Floop, the language obtained from Bloop
by adding a whi | e statement.

e A partial function is general recursive iff it is partial
recursive (computable by some TM).

e Atotal function is partial recursive iffitis in DTIME| f]
for some primitive recursive function f.

Theorem 12.2 The following problems are decidable in
polynomial time.
EmptyNFA = {N | NisanNFA; £(N) = 0}
>*DFA = {D | DisaDFA; £(D) = %*}
MemberNFA = {(N,w) | NisanNFA; w € L(N)}
EqualDFA = {(D:,D,) | Dy, D, DFAs;, £(D;) = £(D,)}
EmptyCFL = {G | GisaCFG; L(G) = 0}

MemberCFL = {(G,w) | GisaCFG; w € L(G)}

EmptyNFA = {N : No start-final path in graph of N}
>>YDFA = {D | DisaDFA; L(D) ="}
D € ¥>*DFA < D € EmptyNFA

MemberNFA = {(N,w) | NisanNFA; w € L(N)}

Convert to another reachability problem:

0,1

EqualDFA = {(D1,D,) | L(D1) = L(D-)}

(D1, Dy) € EqualDFA < (D; N Dy) U (Dy N Do)
e EmptyNFA

EmptyCFL HW#4

MemberCFL = {(G,w) | GisaCFG; w € L(G)}

CYK Dynamic Programming Algorithm:

1. Assume G in Chomsky Normal Form: N — AB,
N — a.

2. Input: w = wws...w,, G with nonterminals
S A B, ...

1 IfNiwwzw]

3. Nij = 0 otherwise

4. return(.Sy,)

N;; = if(“N = w;” € R)then1lelse0

Nij= V (@k(i<k<j A Aig A Bipry)

“N - AB” €R

CMPSCI 601: Today’s Main Theorem Lecture 12

Theorem 12.3 Thefollowing problemisco-r.e.-compl ete:
Y*CFL = {G | GisaCFG; L(G) = X5}

Proof: [J. Hartmanis, Neil’s advisor]

Y>CFL € re.:

Input: G

Define: 3% = {wyg, wy, wo, ...}

1. fori:=0tooo{

2. if w; ¢ L(G), then return(1)}

(We use the the CYK algorithm for each MemberCFL
check.)

Clearly this returns 1 iff G € X*CFL.

Proposition 12.4 EMPTY is co-r.e. complete, where,
EMPTY = {n | W, =0}

Proof: Show NON-EMPTY to be r.e.-complete: show it
r.e. and reduce K to it. (Good practice!) [

Claim 12.5 EMPTY < ¥*CFL.

Corollary 12.6 >*CFL is co-r.e. complete and thus not
recursive.

How can we prove the Claim?
We need to define: g : N — {0, 1}*,

n € EMPTY <« g¢g(n) € Y*CFL
(Vo) Mu(z) #1 & L(g(n)) =%,

n

M, has no accepting computations < L(g(n)) = X»

10

We need to represent entire computations of TM’s by
strings. Assume that M, is a one-tape machine.

We first defined a string called an Instantaneous De-
scription or ID of a computation of M,,:

M, has alphabet {0, 1}, states {0, 1, ..., §} where 0 is the
halting state and 1 is the start state.

IDp = 10p> wwy -+ w, U

Suppose M, in state 1 looking at a “>” writes a “>” changes

N

to state 3, and moves to the right.

ID;, = p»>3wws --- w, U

In general the ID shows the tape up to and including the
first blank after the last non-blank, with a character for
the state inserted just left of the head position. It Is easy
to tell whether a string is a valid ID.

11

YesComp(n) =
accepting

IDo#IDEAEIDAIDEL ... #ID, | IDg---ID
0# 1# 2# 3# # t| 0 tcompoan

Note that ID, can have any string in {0, 1}* as the input
string. We write every other ID backwards to allow easy
checking by a CFL.

Lemma 12.7 For each n, YesComp(n) isa CFL.

Furthermore, thereisafunctiong € F(L), for all n, g(n)
codes a context-free grammar and

L(g(n)) = YesComp(n)

S = {0,1,>,10,#,0,1,...,q,} where M, has g, states.

n € EMPTY <« YesComp(n)=%; < g(n)e€ X*CFL

The grammar must generate every string that does not
code an accepting computation of M,,.

12

Proof:
YesComp(n) = U(n) U A(n) U D(n) U Z(n)

Un) = {w € X* | wnotin form IDy# - - - #ID;}
A(n) = {w € ¥* | w doesn’t start with an initial ID of M, }
D(n) = {w € ¥* | (3i)(ID;, doesn’t follow from ID;}

Z(n) = {w € ¥* | wdoesn’t end with 0 > 1 LI}

U(n), A(n), and Z(n) are regular languages. To be in
D(n), a string must contain a letter in ID,, ; that does not
follow from the corresponding place in ID; by the rules
of M,, — either the tape changes away from the head or
changes the wrong way at the head. A PDA could guess
and verify the point at which this happens. [

13

Thus, g : EMPTY < »*CFL

n € EMPTY < YesComp(n) = >
& g(n) € X*CFL

14

Arithmetic Hierarchy re

co-r.e.
W co-r.e. r.e complete

Recursive

Primitive Recursive

EXPTIME

PSPACE

co-NP Polynomial-Time Hierarchy NP

complete complete

co-NP NP
NP N co-NP

"truly feasible"

NC

NC 2

log(CFL) sact

NSPACE[log n]

DSPACE[log n]

1
Regular NC

ThC

L ogarithmic-Time Hierarchy AC’

15

