CMPSCI 601: Recall From Last Time Lecture 7

Theorem 9.4: The busy beaver function, o(n), is even-
tually larger than any total, recursive function.

Theorem 9.5: There is a Universal Turing Machine U
such that,

Theorem 9.6: (Unsolvability of Halting Problem) Let,
HALT = {P(n,m) | TM M,(m) eventually halts}

Then, HALT isr.e. but not recursive.

Listing of all r.e. sets: Wo, Wi, Wa, - - -
Wi = n| Min)=1}

Corollary 9.8: Let,
K ={n|MJn)=1} = {n|U(P(n,n))=1}
={n | ne W,}

Then,
K € re.— Recursive.

Notation: M, (x)] means that TM M, converges on in-
put z, I.e.,

My(z)l & My(z)eN & M, (z)#/

Fundamental Theorem of r.e. Sets: Let S C N.
T.FA.E.

1. S is the domain of a partial, recursive function, i.e.,
(An)(S = dom(M,(:)) = {z € N | My(x)|})

2. S = (or S is the range of a total, recursive function,
i.e., S = 0 or S =range(M,(-)) = M,(N), for some
total, recursive function M, (-).

3. S Is the range of a partial, recursive function, i.e.,
S = M,(N), forsomen € N .

4, Sisre., e, S=W,, forsomen € N

Proof: (Please learn this proof!)
(1= 2): Assume (1), S = {z | M, (x)|}.
case 1: S = (. Thus S satisfies (2).
case 2: S £ (. letag € S.
From M,, compute M,., which on input z does the follow-
ing:
l.x:=L(2); y:=R(z) //le,z=Px,y)
2. run M, (x) for y steps

3. if it halts then return(z)
4. else return(ay)

Claim: S = M,(N) = {M,(z) | x € N}.
M,.(N)C S

M,(N) 2 S

Suppose x € S.

Thus M, (z) converges in some number y of steps.
Therefore, M,.(P(z,y)) = x.

Note the non-computable step in the construction: there
IS no way to tell whether we are in case 1 or case 2.

(2) = (3): Assume (2). If S = () then S = My(N) where
M is a Turing machine that halts on no inputs.

Otherwise, S = M,(N), i.e., S is the range of the partial,
recursive function M,,(-).

Note: Eventhough M, (-) is total, it is still considered a
“partial, recursive function”. However, of course, M,(-)
IS not “strictly partial”.

(3) = (4): Assume (3), S = M,(N).
From M, we construct My, which on input = does the
following:

1. fori:=11t0 00 {
2. run M,(0), M, (1), ..., M,(z) for i steps each.
3. If any of these output x, then return(1)}

The above construction is called dove-tailing.

Claim: M,(-) = ps(+).
If x € S, then x € range(M,,(+)).

So for some 5 and k, M,(j) = z and the computation
takes k steps.

Thus, at round ¢ = max(j, k), My(x) will halt and output
“1’,.

If x ¢ S, then My(z) will never halt.

Thus, S = Wy = {z | My(z)=1}.

(4) = (1): Assume (4), and thus S = W,,.
S = {i| MJ()=1}

From M,,, construct M, which on input = does the fol-
lowing:

1. run M,(x)
2.1f (M, (x) = 1) then return(l)
3. else run forever

S = Az | Ma(z)|}

Thus, S = dom(My(-)) = {z | My(z)l} . [)

This theorem lets us put the “enumerable” in r.e..

A nonempty language A is said to be Turing enumer-
able if there exists a TM that, when started on blank tape,
lists the elements of A. The TM will take forever to do
so If A is infinite, and it might repeat elements.

It should be pretty clear that for nonempty sets “Turing
enumerable” means exactly “the range of a total recursive
function”. So except for 0, “Turing enumerable” means
exactly “r.e..”

An infinite set of numbers is Turing enumerable in in-
creasing order if it is Turing enumerable by a machine
that lists 7 before 5 whenever i < j.

It’s pretty easy to see that an infinite set is Turing enu-
merable in increasing order iff it is recursive:

e = Keep running the TM until you hit the target or
pass it.

e <: Run through all numbers in increasing order and
test each one, listing the ones that are in the language.

CMPSCI 601: Reductions Lecture 7

Definition 7.1 Let S and 7" be sets of numbers. We say
that S is reducibleto T (S < T)) iff there exists a total,
recursive f : N — N such that:

(Vw e N) (weS) & (f(w)eT)
[)

Note: Later we will require f € F(DSPACE][logn)).

The notation “S < T Is meant to suggest “S IS no more
difficult than 7. To use this notation, we should be con-
fident that “<” is reflexive and transitive (You’ll check
this on HW#3.) The notation suggests as well that it is
anti-symmetric, but it is not. It is quite possible to have
S<T, T<S§,and S # T all be simultaneously true. In
this case we say S and 1" are equivalent.

This kind of reduction is called a many-one reduction.
Later we’ll see another kind called a Turing reduction.

An Example:
A0’17 = {n | Mn(O) = 17}

Clam: K < A0717.

Proof: Define f(n) as follows:

| erase Input; If 1 then write 17
Mym) = |~ \write n M, else loop

ne K Mn(n) =1 & Mf(n)(o) =17 & f(n) c A0,17
)

If K < Ag 17 really means “K is no harder than Ay ;7" or
equivalently “A 17 is no easier than K, then we should
be able to conclude that A ;7 Is not recursive because K
IS not recursive. The next theorem will let us do this In
general.

10

Fundamental Theorem of Reductions:
If S < T are languages then:

1. 1f T isr.e., then Sisr.e..
2. 1f T is co-r.e., then S is co-r.e..
3. If T 1s Recursive, then S 1s Recursive.

Moral: Suppose S < T'. Then,

o If T Is easy, thensois S.
e If Sis hard, thenso is T'.

Another way to phrase this is that r.e., co-r.e., and Recursive
are each downward closed under reductions.

11

Proof: Let f: S<T,ie., (Vr)(x e S & f(x)eT)

1. Suppose T' = W; = {x | M;(z) = 1}.
From M; compute the TM M, which on input = does
the following:

(a) compute f(x)

(b) run M;(f(x)) My | =|f| M,

Then
(xel) & (flz)eT) & (Mi(f(z)=1) & (My(z)=1

Therefore, S = Wy, and we have shown that S € r.e.,
as desired.

12

Recall our hypothesis for this proof:
f:8<T, e, Vz)(z e S & f(x)eT)

The last two parts of the theorem follow directly from
the first:

2. Observation: S<T & S<T.

Tccore & Tere,Scre. & S €co-re.

3.T € Recursive = (T ere.ANT eco-re.) =

(Sere. AN Seco-re) = §e€Recursive

13

Definition 7.2 Let C C N. C'is r.e.-complete iff

1.C €re., and
2. (VAere) (A<C()

Intuition: C'is a “hardest” r.e. set. In the “<” ordering,
In that it is above all other r.e. sets. [

If you have seen a definition of “NP-complete”, this def-
Inition should look familiar. NP-completeness was ex-
plicitly modeled on this historically earlier concept.

It is perhaps odd that there are any r.e.-complete sets at
all — the definition doesn’t suggest why there should be.
But in fact we’ve already seen one.

14

Theorem 7.3 K isr.e. complete.

Proof: Let A € r.e. be arbitrary, so we know that A = W;
for some s.

We want: (Vn)(ne A <& f(n) € K)

Note the implicit types here. The number f(n) is going
to be interpreted as the number of a TM.

Define the recursive function f which on input n com-
putes this particular TM:

M,y = | Erase Input Write n M;

ncA & Mn)=1 < (Vo)Mypy(z)=1
& Myy(f) =1 & f) ek
o

Get used to numbers being treated as machines! Lots of

our standard languages are of the form {n : M, isa TM
such that. .. }.

15

Proposition 7.4 Suppose that C' is r.e.-complete and the
following hold:

1.5 €re., and
2.0 <S8

then S isr.e.-complete.

Proof: Show: (VA € re.)(A < S)
Know: (VA € re.)(A < C)

Follows by transitivity of <: A< (C < S. [

Corollary 7.5 Ay 17 Isr.e.-complete.
Every r.e.-complete set isr.e. and not recursive.

16

HALT = {P(n,m) | TM M,(m) eventually halts}
Proposition 7.6 HALT isr.e.-complete.

Proof: We have already seen that HALT is r.e. It thus
suffices to show that K < HALT.

We want to build a total, recursive f such that for all
w € N,

weK << f(w)eHALT

Myw)=1 < Myw)(R(f(w))) halts

That is, we want,
M,(w) =1 & M,(r) halts, where f(w) = P({,r)

Given w, let, M,y =

Erase input Write w M, igéetg?\r,‘err‘gét

Letting f(w) = P({(w),0), we have that
My(w) =1 <& My, (0)halts <« f(w) € HALT#

17

Arithmetic Hierarchy re

co-r.e.
W co-r.e. r.e complete

Recursive

Primitive Recursive

EXPTIME

PSPACE

co-NP Polynomial-Time Hierarchy NP

complete complete

co-NP NP
NP N co-NP

"truly feasible"

NC

NC 2

log(CFL) sact

NSPACE[log n]

DSPACE[log n]

1
Regular NC

ThC

L ogarithmic-Time Hierarchy AC’

18

