
CMPSCI 601: Recall From Last Time Lecture 7

Theorem 9.4: The busy beaver function, ������� , is even-
tually larger than any total, recursive function.

Theorem 9.5: There is a Universal Turing Machine �
such that,

� �	� �
���
� ��� � � ����� �

Theorem 9.6: (Unsolvability of Halting Problem) Let,

HALT � ��� �
����� � � TM � ����� � eventually halts �
Then, HALT is r.e. but not recursive.

Listing of all r.e. sets: � � � � � � � � ����� �
� ! � �"� ��� ! �����#� $ �

Corollary 9.8: Let,
% � �"� �&� �'�
�(�)� $ � � �*� � � �+� �
�&�,�(���#� $ �

� �"� �#� - � � �
Then, % - r.e. . Recursive /
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Notation: � �'��� ��� means that TM � � converges on in-
put � , i.e.,

� �'��� ��� � � �'��� � - N � � ����� ���� 	

Fundamental Theorem of r.e. Sets: Let 
 � N.
T.F.A.E.

1. 
 is the domain of a partial, recursive function, i.e.,
�
� �(� � 
 � dom �+� ����� ��� � ��� - N �&� �'��� ��� � �

2. 
 � � or 
 is the range of a total, recursive function,
i.e., 
 � � or 
 = range( � � � � � ) = � � � N � , for some
total, recursive function � ����� � .

3. 
 is the range of a partial, recursive function, i.e.,


 � � �'� N � � for some � - N /

4. 
 is r.e., i.e., 
 � � � , for some � - N
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Proof: (Please learn this proof!)
� $�� � � : Assume (1), 
 � ��� �&� ����� ��� � .

case 1: 
 � � . Thus 
 satisfies (2).

case 2: 
 �� � . let � � - 
 .

From � � compute � � , which on input � does the follow-
ing:

1. � � � � � � �	��
 � � � � � � 
�
 i.e., � � � ��� ��
 �
2. run � ����� � for 
 steps

3. if it halts then return( � )

4. else return( � � )

Claim: 
 � � � � N � � ��� � ��� � � � - N � .
� � � N � � 

� � � N ��� 

Suppose � - 
 .

Thus � � ��� � converges in some number 
 of steps.

Therefore, � � �+� ��� ��
 ��� � � .

Note the non-computable step in the construction: there
is no way to tell whether we are in case 1 or case 2.
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� � � � � � � : Assume (2). If 
 � � then 
 � � � � N � where� � is a Turing machine that halts on no inputs.

Otherwise, 
 � � �'� N � , i.e., 
 is the range of the partial,
recursive function � � � � � .
Note: Even though � ��� � � is total, it is still considered a
“partial, recursive function”. However, of course, � � � � �
is not “strictly partial”.
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� � � � ����� : Assume (3), 
 � � �'� N � .
From � � we construct � � , which on input � does the
following:

1. for � � � $ to � �
2. run � ������� � � ����$ � � / / / � � �'� � � for � steps each.

3. if any of these output � , then return(1) �

The above construction is called dove-tailing.

Claim: � � � � �#� �	� ��� � .
If � - 
 , then � - range( � � ��� � ).
So for some 
 and � , � � � 
 � � � and the computation
takes � steps.

Thus, at round � � � 
�� � 
 � � � , � � ��� � will halt and output
“1”.

If � �- 
 , then � � ��� � will never halt.

Thus, 
 � � � � ��� �&� � ��� � � $ � .
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����� � � $ � : Assume � � � , and thus 
 � � � .

 � � � ��� ��� � � � $ �

From � � , construct � � , which on input � does the fol-
lowing:

1. run � ����� �
2. if �+� � ��� �#� $ � then return(1)

3. else run forever


 � ��� ��� � ��� ��� �

Thus, 
 � dom �	� � � � ��� � ��� ��� � ��� ��� � .
�
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This theorem lets us put the “enumerable” in r.e..

A nonempty language � is said to be Turing enumer-
able if there exists a TM that, when started on blank tape,
lists the elements of � . The TM will take forever to do
so if � is infinite, and it might repeat elements.

It should be pretty clear that for nonempty sets “Turing
enumerable” means exactly “the range of a total recursive
function”. So except for � , “Turing enumerable” means
exactly “r.e..”
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An infinite set of numbers is Turing enumerable in in-
creasing order if it is Turing enumerable by a machine
that lists � before 
 whenever ��� 
 .

It’s pretty easy to see that an infinite set is Turing enu-
merable in increasing order iff it is recursive:

� � : Keep running the TM until you hit the target or
pass it.

� � : Run through all numbers in increasing order and
test each one, listing the ones that are in the language.
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CMPSCI 601: Reductions Lecture 7

Definition 7.1 Let 
 and � be sets of numbers. We say
that 
 is reducible to � � 
 � � � iff there exists a total,
recursive � � N � N such that:

����� - N � ��� - 
 � � � � ��� � - � �
�

Note: Later we will require � - 	 � DSPACE 
���
�� ��� � .
The notation “ 
 � � ” is meant to suggest “ 
 is no more
difficult than � ”. To use this notation, we should be con-
fident that “ � ” is reflexive and transitive (You’ll check
this on HW#3.) The notation suggests as well that it is
anti-symmetric, but it is not. It is quite possible to have

 � � , � � 
 , and 
 �� � all be simultaneously true. In
this case we say 
 and � are equivalent.

This kind of reduction is called a many-one reduction.
Later we’ll see another kind called a Turing reduction.
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An Example:

� ��� � � � �*� ��� �'�����#� $�� �
Claim:

% � � ��� � � .
Proof: Define � �
��� as follows:

� ��� ��	 � erase input;
write � � � if 1 then write 17

else loop

� - % � � ���
��� � $ � � ��� ��	 �����#� $�� � � �
��� - � ��� � �
�

If
% � � ��� � � really means “

%
is no harder than � ��� � � ” or

equivalently “ � ��� � � is no easier than
%

”, then we should
be able to conclude that � ��� � � is not recursive because

%
is not recursive. The next theorem will let us do this in
general.
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Fundamental Theorem of Reductions:

If 
 � � are languages then:

1. If � is r.e., then 
 is r.e..

2. If � is co-r.e., then 
 is co-r.e..

3. If � is Recursive, then 
 is Recursive.

Moral: Suppose 
 � � . Then,

� If � is easy, then so is 
 .
� If 
 is hard, then so is � .

Another way to phrase this is that r.e., co-r.e., and Recursive
are each downward closed under reductions.
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Proof: Let � � 
 � � , i.e., ��� � � ��� - 
 � � ��� � - � �

1. Suppose � � � ! � � � ��� ! ��� � � $ � .

From � ! compute the TM � !�� which on input � does
the following:

(a) compute � ��� �
(b) run � ! � � ��� � � � ! � � � � !

Then
��� - 
 � � � � ��� � - � � � �+� ! � � ��� ���#� $ � � �+� ! � ��� � � $ �
Therefore, 
 � � ! � , and we have shown that 
 - r.e.,
as desired.
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Recall our hypothesis for this proof:

� � 
 � � � i.e., ��� � � ��� - 
 � � ��� � - � �

The last two parts of the theorem follow directly from
the first:

2. Observation: 
 � � � 
 � � .

� - co-r.e. � � - r.e. � 
 - r.e. � 
 - co-r.e.

3. � - Recursive � � � - r.e.
� � - co-r.e. � �

� 
 - r.e.
� 
 - co-r.e. � � 
 - Recursive

�
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Definition 7.2 Let � � N. � is r.e.-complete iff

1. � - r.e., and

2. ��� � - r.e. � � � � � �

Intuition: � is a “hardest” r.e. set. In the “ � ” ordering,
in that it is above all other r.e. sets.

�

If you have seen a definition of “NP-complete”, this def-
inition should look familiar. NP-completeness was ex-
plicitly modeled on this historically earlier concept.

It is perhaps odd that there are any r.e.-complete sets at
all – the definition doesn’t suggest why there should be.
But in fact we’ve already seen one.
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Theorem 7.3
%

is r.e. complete.

Proof: Let � - r.e. be arbitrary, so we know that � � � !
for some � .

We want: ��� ��� ��� - � � � �
��� - % �

Note the implicit types here. The number � �
��� is going
to be interpreted as the number of a TM.

Define the recursive function � which on input � com-
putes this particular TM:

� � � ��	 � Erase input Write � � !

� - � � � ! �
�(�)� $ � ��� � ��� ��� ��	 ��� � � $
� � ��� ��	 � � �
�����#� $ � � �
��� - %

�

Get used to numbers being treated as machines! Lots of
our standard languages are of the form �"� � � � is a TM
such that. . . � .
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Proposition 7.4 Suppose that � is r.e.-complete and the
following hold:

1. 
 - r.e., and

2. � � 


then 
 is r.e.-complete.

Proof: Show: ��� � - r.e. � � � � 
 �

Know: ��� � - r.e. � � � � � �

Follows by transitivity of � : � � � � 
 .
�

Corollary 7.5 � ��� � � is r.e.-complete.

Every r.e.-complete set is r.e. and not recursive.
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HALT � ��� �
����� � � TM � ����� � eventually halts �
Proposition 7.6 HALT is r.e.-complete.

Proof: We have already seen that HALT is r.e. It thus
suffices to show that

% � HALT.

We want to build a total, recursive � such that for all� - N,

� - % � � ��� � - HALT

� � ��� � � $ � � � � � � � 	 	 � � � � ��� ����� halts

That is, we want,
� � ��� � � $ � � � ���'� halts, where � � � �)� � �������'�
Given � , let, � � � � 	 �

Erase input Write � � � if 1 then halt
else diverge

Letting � ��� � � � ������� � � ��� , we have that
� � ��� �)� $ � � � � � 	 ����� halts � � ��� � - HALT

�
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co-r.e.
complete

Arithmetic Hierarchy r.e.

completer.e.co-r.e.

Polynomial-Time Hierarchy NP
complete

co-NP
complete

co-NP NP 

NP 

U

co-NP

P

NC 2

log(CFL)

NC

NC

SAC

ThC

"truly feasible"

Regular

NSPACE[log n]

Logarithmic-Time Hierarchy AC

DSPACE[log n]

PSPACE

EXPTIME

Primitive Recursive

Recursive

1

0

1

0
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