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Graph Coloring Theorems

• Coloring Triangulations of Polygon

• The Art Gallery Problem

• Chromatic Number and Degree

• Vizing’s Edge Coloring Theorem

• 5-Coloring a Planar Graph

• Chromatic Polynomials

• Calculating Chromatic Polynomials



Coloring Triangulations

• A triangulation of a polygon is a 
division of it into triangles by drawing 
chords from vertex to vertex inside 
it. This results in a planar graph. 

• It’s easy to show by induction, or by 
Euler’s formula, that an n-gon yields 
exactly n-2 triangles from this 
process.

• The resulting graph also always has a 
chromatic number of 3.



Coloring Triangulations

• Let’s prove this by induction on n, the number 
of sides is the polygon.  The base is n = 3.

• The IH is that the triangulation of any k-gon 
for k < n can be 3-colored.

• Given an n-gon, any chord we draw gives us 
an i-gon and a j-gon, where i + j = n + 2, since 
we have created two new sides.  We can 3-
color both of these by the IH.  

• But they intersect in only two vertices, and 
we can choose colors to match for those. 



The Art Gallery Problem

• In the Art Gallery Problem, we have a 
polygonal gallery and we want to station 
guards at vertices, as few as possible, to have 
every point in the gallery in view of a guard.  
It suffices for them to see all other vertices.

• We show that floor(n/3) guards suffice for n 
walls.  Just triangulate the graph and 3-color 
the result.  One color has at most floor(n/3) 
vertices, and we put guards at all vertices of 
that color.



The Art Gallery Problem
• Since every triangle in the graph has one vertex 

of each color, our guards can see all of every 
triangle, and thus see the entire graph.

• In fact floor(n/3) guards are necessary.  The graph 
in this picture is an example of a family of 
polygons with n “teeth” and 3n+1 edges.  A 
gallery of this shape requires at least floor((3n
+1)/3) = n guards because no guard can see 
more than one of the n tooth points.



Chromatic Number and Degree

• A theorem of Brooks says that the degree of 
graph is an upper bound on the chromatic 
number, with two exceptions: odd cycles and Kn.

• This is not at all a tight bound, as the graph Wn 
is 3- or 4-colorable but has degree n-1.

• The size of largest included Kn in a graph is 
certainly a lower bound on the chromatic 
number, but there are triangle-free graphs of 
arbitrarily high chromatic number (see Exercise 
18 of section 2.4, which produces huge graphs).



Vizing’s Edge Coloring Theorem

• The phone company used to implement huge 
multigraphs with colored wires.  You didn’t 
want two wires of the same color coming out 
of the same point, and you only had so many 
colors.  You’d like an edge coloring.

• If a graph has degree d, any edge coloring 
needs at least d colors.

• Vizing proved the there is always an edge 
coloring with d+1 colors, so that the edge 
chromatic number is always d or d+1.



5-Coloring a Planar Graph

• We won’t prove the 4-color theorem here, 
but we can show that any planar graph can be 
5-colored.  The proof is by induction on the 
number of vertices, n.

• Recall that planar graph must have vertex of 
degree at most 5.  Remove that vertex v and 
use the IH to color the remaining graph.

• If the neighbors of v don’t have five different 
colors, we are done because there is a color 
left for v.  So we look at the other case.



5-Coloring a Planar Graph

• We can draw the five neighbors of v 
as in this picture.  Look at the regions 
of the graph that we can get to from 
the red or yellow neighbors, using 
only red and yellow nodes.

• We might be able to get from the red 
to the yellow neighbor that way.  But 
if we can do that, we can’t get from 
the dark blue to the green neighbor 
using only those two colors.



5-Coloring a Planar Graph
• If we can’t get from the red neighbor 

to the yellow neighbor using only red 
and yellow, switch red and yellow in 
the region that you can get to.  Then 
we can color v red, and we win.

• Otherwise, switch dark blue and 
green in the region of those two 
colors containing the dark blue 
neighbor, then color v dark blue.

• The coloring is still legal.



Chromatic Polynomial 
• Let G be any graph, and define Pk(G) to be the 

number of colorings of G with k colors. For 
example, if G has no edges, Pk(G) = kn, where n 
is the number of vertices in G.

• It turns out that this function is always a 
polynomial in k, and thus it is called the 
chromatic polynomial.  (We’ll prove this soon.)

• Examples: If G is a path, or in fact any tree, then 
Pk(G) = k(k-1)n-1.  Pk(Kn) is the number P(k, n) 
of no-repeat sequences of length n from a k-
element set, or k(k-1)…(k-n+1).



Calculating Chromatic Polys

• Let C4 be the cycle a-b-c-d.  There are k(k-1)2 

colorings with a and c the same color, and 
k(k-1)(k-2)2 with them different.  This gives 
k(k-1)(k2 - 3k + 3) in all.

• Theorem 6 in Tucker lets us compute Pk(G) 
from the polynomials of two other graphs.  If 
x and y are two non-adjacent vertices in G, 
then Pk(G) = Pk(G+xy) + P(Gx=y).  Here G+xy is 
the graph obtained by adding (x, y) to G, and 
Gx=y is the graph obtained by merging x and y.



Calculating Chromatic Polys

• Similarly, Pk(G) = Pk(G-xy) - Pk(Gx=y) by simple 
arithmetic on the first result.

• These facts let us compute Pk(G) for any 
graph G, by reducing to the cases of smaller n 
and of graphs that are either empty or 
complete.  Remember that if a graph is 
disconnected, we just multiply together the 
polynomials of its components.



Chromatic Poly Example

• Let’s return to the case of G = C4, the four-
node cycle.  Let x and y be adjacent nodes.  
Then G-xy is a 4-node tree, with P(G-xy) = 
k(k-1)3.  And Gx=y = C3, so P(Gx=y) = k(k-1)
(k-2).  (Note that C3 = K3.)

• This gives us P(G) = k(k-1)[(k-1)2 - (k-2)] = 
k(k-1)(k2 - 3k + 3) as we computed before.

• And of course by induction, P(G) is always a 
polynomial in k.


