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Graph Planarity

• Definitions and Motivation

• Coloring Maps and Graphs

• The Circle/Chord Method

• Kuratowski’s Theorem: K5 and K3,3

• Euler’s Theorem: r = e - v + 2

• Planar Graphs have e ≤ 3v - 6

• Bipartite Planars have e ≤ 2v - 4



Definitions and Motivation

• A planar embedding of a graph is a diagram 
in the plane where no two edges cross.

• A planar graph is a graph for which some 
planar embedding exists.  (A planar graph may 
have other drawings that do cross edges.)

• An electrical circuit is a graph, and for 
engineering reasons we don’t want wires to 
cross in our design.  Proving things about the 
class of planar graphs tells us about many 
naturally occurring graphs.



Coloring Maps and Graphs 

• To color a map, we pick 
a color for each region 
so that no two adjacent 
regions have the same 
color.

• We can convert this to 
a graph problem by 
making a node for each 
region and an edge for 
each boundary. RI
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Coloring Graphs

• We’ll discuss later how 19th century 
mathematicians conjectured that every planar 
graph (and hence every map) can be 4-colored.

• We’ve already seen that a graph can be 2-
colored (is bipartite) if and only if it has no odd-
length circuit. 

• Testing 3-colorability is an NP-complete 
problem, either for general graphs or for planar 
graphs.



Testing Planarity

• There are fast algorithms to input a graph, 
determine whether it is planar, and provide a 
planar embedding if it is. But they’re a bit 
complicated for this course.

• Here we’ll look at a method that suffices in 
practice to do this for small graphs.  We’ll also 
see two famous theorems about planarity, and 
prove one of them.



The Circle/Chord Method

• Many of the graphs we want to consider have 
a circuit that contains all the vertices, also 
called a Hamiltonian circuit.

• If a graph with such a circuit has a planar 
embedding, then it must be possible to draw 
the graph with that circuit as a circle.

• Every other edge of the graph must then be a 
chord, connecting two vertices on the circle 
either inside it or outside.



A Circle-Chord Example

• Here is a graph with 
8 nodes and 12 edges.  
It has a Hamilton 
circuit a-f-c-h-d-g-b-
e-a, in black.

• Redrawing the graph, 
we now have to place 
the four red edges. 
We can put bf and cg 
in, and ah and ed out.
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Another Example

• This graph, called K3,3, 
has 6 nodes and 9 
edges. Hamilton circuit 
a-e-c-f-b-d is in black.

• But now we can’t place 
the three red edges 
without crossing.  If af 
goes in, cd must be out, 
and there is no place 
for be either in or out.
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Kuratowski’s Theorem

• We’ve just seen that K3,3 is a non-planar graph.  
In the same way we can show that K5, the 
complete graph on five nodes, is non-planar.  

• Kuratowski proved that any non-planar graph 
“contains” either K3,3 or K5 in a certain way.

• A K3,3 configuration is a K3,3 where the edges 
have been subdivided into paths, and similarly 
for K5 configurations.  “Containing” K3,3  
means having a K3,3 configuration as a 
subgraph.



Kuratowski’s Theorem

• Thus if we can find a K3,3 or K5 configuration 
in the graph, we know it is non-planar.  In 
practice, most small non-planar graphs 
contain a K3,3 configuration, and the circle-
chord method is often able to find it.

• Exhaustively searching for such configurations 
gives a polynomial-time algorithm to test 
planarity, though there are better ones.



Euler’s Theorem: r = e - v + 2
• A cube has 6 faces, 8 vertices, and 12 edges.  A 

dodecahedron has 12 faces, 20 vertices, and 30 
edges.  A tetrahedron has 4 faces, 4 vertices, and 
6 edges.  All satisfy the equation r = e - v + 2, 
where r is the number of faces.

• This rule works for any polyhedron (suitably 
defined) and, as we’ll now see, for any planar 
embedding of a connected graph.

• Lakatos’ Proofs and Refutations goes into the 
definition of a polyhedron starting from this 
theorem, in dialogue form.



Proof of Euler’s Theorem

• We’ll prove the theorem by induction on the 
number of edges in the planar graph.

• The base case is e = 0, forcing v = 1 and r = 1, 
since the whole plane is a region. This works 
because 1 = 0 - 1 + 2.

• If we add a new edge to a degree-1 node, we 
add 1 to v and e without changing r.

• If we connect two existing nodes by an edge, 
we add 1 to r and e without changing v.



e ≤ 3v - 6 for Planar Graphs

• Define the degree of a region to be the 
number of edges surrounding it, counting an 
edge twice if the region is on both sides.

• Once we have more than one edge in a 
connected planar graph, every region (including 
the one outside the graph) must have degree 
at least 3.  (No loops or parallel edges.)

• So 3r ≤ 2e, and r ≤ 2e/3 together with r = e - 
v + 2 gives us 2e/3 ≥ e - v + 2,  or e/3 ≤ v - 2, 
or finally e ≤ 3v - 6.



e ≤ 3v - 6

• This tells us right away that K5 cannot be 
planar, since there v = 5 and e = 10, and 5 > 
3⋅5 - 6.

• But it doesn’t rule out K3,3 being planar, 
because there v = 6 and e = 9, and 9 ≤ 3⋅6 - 
6 is true.

• It does justify our earlier claim that many 
natural graphs are sparse, since all planar 
graphs have O(n) rather than O(n2) edges.



Bipartite Planar Graphs

• Suppose now that we have a bipartite 
connected planar graph.  Assuming we have 
more than one edge, the minimum degree of 
a region is now 4, since the boundary of a 
region is a circuit and must have even length.

• So now 4r ≤ 2e, and r = e - v + 2 gives us e/2 
≥ e - v + 2, e/2 ≤ v - 2, and e ≤ 2v - 4.

• And now we see that K3,3 cannot be planar 
because v = 6, e = 9, and 9 > 2⋅6 = 4.


