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Burnside's Theorem

• Group Actions on Colorings

• Equal Equivalence Classes

• Colorings of a One-Sided Triangle

• Two Forms of Burnside’s Theorem

• Example: Two-Banded Batons

• Example: Three-Banded Batons



Group Actions on Colorings

• We’re currently engaged in counting colorings 
of a figure with symmetries, our main example 
being a two-sided square with colored vertices.

• The symmetries of a two-sided square are 
eight, four rotations by multiples of 90 degrees 
and four transformations that are the 
composition of a reflection and one of these 
rotations.

• These symmetries form a group under the 
operation of functional composition.



Group Actions on Colorings

• In general, if we have a set S of objects, and a 
group G of bijections from S to S, we can ask 
how many r-colorings of S there are, when 
two colorings are considered to be the same 
when an element of G takes one to another.

• Each element of G induces an action on the 
colorings of S.  We have an equivalence 
relation on colorings, where a coloring c is 
equivalent to every member of its orbit 
under G, the set {f(c): f ∈ G}.



Equal Equivalence Classes

• The number of colorings up to symmetry is 
the number of orbits, or the number of 
equivalence classes.

• In some cases the orbits all have the same 
size, making them easy to count.

• For example, consider colorings of the 
vertices of an r-gon using each of r colors 
exactly once.  G here will be just the set of 
rotations, without reflections, a group of r 
elements (called ℤr, the integers mod r).



Equal Equivalence Classes

• There are r! colorings of the r-gon with 
exactly r colors.  If c is any coloring, the orbit 
of c consists of exactly r colorings.

• The number of equivalence classes is thus 
just r!/r = (r-1)!.

• What if we add rotations?  Now each orbit 
has exactly 2r colorings in it (assuming r > 2) 
and the number of classes is (r-1)!/2.

• But things are more complicated for general 
colorings, where objects have the same color.



Coloring One-Sided Triangles

• Let’s look at the eight 2-colorings of a 
triangle, with G being the group ℤ3 of three 
rotations.

• We can’t just divide the number of colorings 
(8) by |G|, as this isn’t even an integer.

• There are in fact four classes, as any two 
colorings with the same number of white 
vertices are equivalent.  Two classes (0 and 3 
whites) have one member, the other two (1 
and 2 whites) have three each.



Coloring One-Sided Triangles

• If we look at 3-colorings of triangles under 
rotation, we find that the 27 colorings divide 
into eleven classes, three of size 1 (BBB, RRR, 
WWW) and eight of size 3.  (Note that BWR 
and BRW are different with just rotations.)

• Under the group of six symmetries of a two-
sided triangle, with both rotations and 
reflections, we get ten classes, three of size 1, 
six of size 3, and one of size 6.



Burnside’s Theorem

• Burnside’s Theorem allows us to count the 
number N of equivalence classes of objects 
under a group action.

• Let T be any collection of colorings of S that 
is closed under G.  For any x in T, let φ(x) be 
the number of elements of G that leave x 
fixed.  Then N is 1/|G| times the sum, for all x 
in T, of φ(x).

• Why is this true?



Burnside’s Theorem

• Consider the orbit of any element x of T.  If 
we count the elements of this orbit with 
multiplicities, we will get exactly |G|.  Every 
element f of G takes x somewhere, and the 
number that take it to each element of the 
orbit is exactly φ(x). 

• Counting φ(x) for each element of the orbit, 
we get |G| total, which means that each orbit 
counts 1 in the sum after we divide by |G|.



Alternate Burnside’s Theorem

• We can think of this same sum in another 
way.  For every element π of G, let Ψ(π) be 
the number of colorings in T that are fixed by 
π.  Then N = 1/|G| times the sum, over all π 
in G, of Ψ(π).

• This is true because if π fixes x, we count it 
exactly once in the sum of the φ(x)’s and 
exactly once in the sum of the Ψ(π)’s.  So the 
two sums are exactly the same.



Example: Two-Banded Batons

• Let’s look at a simple example where S is the 
set of two ends of a baton, and our group G 
of symmetries has just two elements: the 
identity function and the function that 
exchanges the two ends of the baton.

• How many r-colorings of this baton are 
possible, up to symmetry?  

• There are r2 colorings before we take 
symmetry into account.



Two-Banded Batons

• If r = 2, there are four possible batons, BB, BW, 
WB, and WW.  The identity permutation fixes 
all four, but the flip fixes only BB and WW.

• Since Ψ(1) = 4 and Ψ(flip) = 2, the sum of 
Ψ(π) is 6 and N = (1/|G|)6 = 3.

• For 3-colorings, the identity fixes all nine 
batons, and the flip only the three that are a 
single color.  So N = (1/2)(9+3) = 6.

• In general for r-colorings N = (1/2)(r2+r).



Two-Banded Batons

• We did these calculations using the alternate 
form of Burnside’s Theorem.  What about the 
original form?

• Of the r2 colorings, the r single-color ones 
have φ(x) = 2 because both the identity and 
the flip fix them.  The other r2-r colorings 
have φ(x) = 1 because only the identity fixes 
them.

• So N = (1/2)(r(2) + (r2-r)(1)) = (r2+r)/2.



Three-Banded Batons

• Now consider three-banded batons with the 
same two-element group G.  There are now 
r3 colorings to start.

• To determine φ(x) for some x, we need to 
know whether the flip fixes x. This is true if 
and only if the colors on the two ends are 
the same.  So r2 x’s have φ(x) = 2 and the 
other r3-r2 have φ(x) = 1.

• Thus N = (1/2)(r2(2) + (r3-r2)) = (r3+r2)/2.



Three-Banded Batons

• Alternatively, we can determine N by seeing 
how many colorings are fixed by each element 
of G.

• The identity fixes all r3, and the flip fixes r2, so 
we have N = (1/2)(r3+r2).

• What about four bands?  Now the identity 
fixes all r4 and the flip fixes r2, so N = (r4+r2)/2.

• In general, for 2k bands we get N = (r2k+rk)/2 
and for 2k+1 bands we get N = (r2k+1+rk+1)/2.


