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Excluded Positions

• Suppose we have n distinct items that must 
be placed by a bijection into n distinct 
positions.  There are n! ways to do this.

• But now suppose that certain item-position 
pairs are unacceptable, and we want to count 
the bijections that meet these constraints.

• We can think of this as counting the perfect 
matchings in the bipartite graph whose edges 
represent the valid pairs.



A Five-Position Example

• In this example, seven of 
the 25 pairs are excluded.    
So of the 5! possible 
bijections, some are bad.

• We can let Ai be the set 
of maps that are bad in 
the ith column.  Then we 
are looking for the 
number of maps that are 
in none of the Ai’s.
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A Five-Position Example

• By the IE formula we 
want N - S1 + S2 - S3 + S4 
- S5, where Sk is the sum 
of the sizes of all k-way 
intersections of the Ai’s.

• |A1| = 4! and |A2| = 2(4!). 
S1 is the sum of one term 
of 4! for each excluded 
square, in this case 7(4!).
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A Five-Position Example

• With some careful 
counting, we can get that 
S2 = 16(3!), S3 = 13(2!), S4 
= 3(1!), and S5 = 0.

• This makes the total 5! - 
7(4!) + 16(3!) - 13(2!) + 
3(1!) = 120 - 168 + 48 - 
26 + 3 = 25.

• Can we do this more 
systematically?
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Placing Non-Capturing Rooks
• A chess rook can move any distance 

horizontally or vertically.  A set of 
rooks on the board is non-
capturing if no two are on the same 
row or the same column.

• Our whole problem was the number 
of ways to place n non-capturing 
rooks on the valid squares.

• It turns out to be useful to 
investigate placing them on the invalid 
squares, as we just saw.



Rook Polynomials

• Let B be a board, a set of squares that is a 
subset of an n by n grid.  

• We define the rook polynomial of B, called 
R(x, B), to be the polynomial in x whose xk 
coefficient is rk(B), the number of ways to 
place k non-capturing rooks on the squares 
of B.

• This is a polynomial of degree at most n, but 
it is a property of the squares rather than of 
the number n.



Rook Polynomial Examples

• We always have r0(B) = 1 and r1(B) equal to 
the number of squares in B. 

• If B is contained within a single row or 
column, all ri’s for i > 1 are zero.

• An n by n square has rk(B) = k!C(n, k)2, as we 
saw on the practice second midterm.

• The n by n square without its main diagonal 
has rn(B) = Dn, the derangement number.



Disjoint Subboards
• Why do we keep this information as 

a polynomial instead of just 
numbers?

• If a board has disjoint subboards as 
in this example, we can compute R(x, 
B) as R(x, B1)R(x, B2), just multiplying 
polynomials.

• Here B1 is the top left square and B2  
is the rest.  No square in one is in 
the row or column of a square in the 
other.



Disjoint Subboard Example

• Permuting the rows or columns of  
a board does not change its rook 
polynomial.

• In this example we can permute 
to get a board that breaks into 
three disjoint subboards, so its 
polynomial is (1+4x+2x2)(1+3x
+x2)(1+x).
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IE Formula for Rook Polynomials

• Now we can apply the IE formula using rook 
polynomials to more quickly calculate the Sk’s.

• Sk is just rk(B)(n-k)!, where B is the board of 
excluded squares.  So the total number of valid 
maps is n! - r1(B)(n-1)! + r2(B)(n-2)! - … + 
(-1)nrn(B)(n-n)!.

• In our example, R(x, B) = (1+4x+2x2)(1+3x+x2)
(1+x) = 1+8x+22x2+25x3+12x4+2x5 and our 
number is 6! - 8(5!) + 22(4!) - 25(3!) + 12(2!) - 
2(1!) = 720 - 960 + 528 - 150 + 24 - 2 = 160.



Computing Rook Polynomials
• This board does not break into 

disjoint pieces, but we can 
compute its rook polynomial.

• Any set of rooks either contains 
the red-x square or it doesn’t.

• The ones that do are counted by 
the rook polynomial of the board 
we get by removing the red square 
and all squares in its row or 
column, multiplied by x to account 
for the rook on the red-x square.
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Computing Rook Polynomials

• The second board has polynomial 
(1+x)(1+2x), so we get (1+x)(2+x)x.

• The sets that don’t have the red-x 
square are counted by the rook 
polynomial of the third board, from 
just deleting the red x.  This is (1+3x)
(1+2x).

• Similar decomposition can work for 
any board.  It’s faster with the right 
choice of red-x square.
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One More Example
• Here when we decompose on the 

red x, the second board has 
polynomial (1+2x)(1+2x)(1+x).

• The third has (1+3x+x2)2(1+x), which 
we multiply by x to account for the 
red-x square.

• The sum works out to 1+8x
+22x2+25x3+11x4+x5.

• The number of maps is 720 - 8(120) 
+ 22(24) - 25(6) + 11(2) - 1 = 159.
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