COMPSCI 575/MATH 5I3
 Combinatorics and Graph Theory

Lecture \#27: Rook Polynomials
(Tucker Section 8.3)
David Mix Barrington
16 November 2016

Rook Polynomials

- Finding Matchings With Excluded Positions
- An Example With Five Positions
- Placing Non-Capturing Rooks
- Rook Polynomials
- Disjoint Subboards
- The IE Formula for Rook Polynomials
- Computing Rook Polynomials

Excluded Positions

- Suppose we have n distinct items that must be placed by a bijection into n distinct positions. There are n ! ways to do this.
- But now suppose that certain item-position pairs are unacceptable, and we want to count the bijections that meet these constraints.
- We can think of this as counting the perfect matchings in the bipartite graph whose edges represent the valid pairs.

A Five-Position Example

- In this example, seven of the 25 pairs are excluded. So of the 5! possible bijections, some are bad.
- We can let A_{i} be the set of maps that are bad in the $i^{\text {th }}$ column. Then we are looking for the number of maps that are
 in none of the A_{i} 's.

A Five-Position Example

- By the IE formula we want $N-S_{1}+S_{2}-S_{3}+S_{4}$ - S_{5}, where S_{k} is the sum of the sizes of all k-way intersections of the A_{i} 's.
- $\left|A_{1}\right|=4!$ and $\left|A_{2}\right|=2(4!)$.
S_{1} is the sum of one term of 4 ! for each excluded square, in this case 7(4!).

X	X			
	x			
		x	x	
			x	X

A Five-Position Example

- With some careful counting, we can get that $S_{2}=16(3!), S_{3}=13(2!), S_{4}$
$=3(1!)$, and $S_{5}=0$.
- This makes the total 5! -$7(4!)+16(3!)-13(2!)+$ $3(1!)=120-168+48-$ $26+3=25$.
- Can we do this more

X	X			
	X			
		x	x	
			x	x

Placing Non-Capturing Rooks

- A chess rook can move any distance horizontally or vertically. A set of rooks on the board is noncapturing if no two are on the same
 row or the same column.
- Our whole problem was the number of ways to place n non-capturing rooks on the valid squares.
- It turns out to be useful to investigate placing them on the invalid squares, as we just saw.

Rook Polynomials

- Let B be a board, a set of squares that is a subset of an n by n grid.
- We define the rook polynomial of B, called $R(x, B)$, to be the polynomial in x whose x^{k} coefficient is $r_{k}(B)$, the number of ways to place k non-capturing rooks on the squares of B.
- This is a polynomial of degree at most n, but it is a property of the squares rather than of the number n.

Rook Polynomial Examples

- We always have $r_{0}(B)=I$ and $r_{1}(B)$ equal to the number of squares in B.
- If B is contained within a single row or column, all r_{i} 's for $\mathrm{i}>\mid$ are zero.
- An n by n square has $r_{k}(B)=k!C(n, k)^{2}$, as we saw on the practice second midterm.
- The n by n square without its main diagonal has $r_{n}(B)=D_{n}$, the derangement number.

Disjoint Subboards

- Why do we keep this information as a polynomial instead of just numbers?
- If a board has disjoint subboards as in this example, we can compute $\mathrm{R}(\mathrm{x}$, B) as $R\left(x, B_{1}\right) R\left(x, B_{2}\right)$, just multiplying polynomials.
- Here B_{1} is the top left square and B_{2} is the rest. No square in one is in the row or column of a square in the other.

Disjoint Subboard Example

- Permuting the rows or columns of a board does not change its rook polynomial.
- In this example we can permute to get a board that breaks into three disjoint subboards, so its polynomial is $\left(1+4 x+2 x^{2}\right)(1+3 x$ $\left.+x^{2}\right)(1+x)$.

IE Formula for Rook Polynomials

- Now we can apply the IE formula using rook polynomials to more quickly calculate the S_{k} 's.
- S_{k} is just $r_{k}(B)(n-k)$!, where B is the board of excluded squares. So the total number of valid maps is $n!-r_{1}(B)(n-I)!+r_{2}(B)(n-2)!-\ldots+$ $(-I)^{n} r_{n}(B)(n-n)!$.
- In our example, $R(x, B)=\left(1+4 x+2 x^{2}\right)\left(1+3 x+x^{2}\right)$ $(I+x)=1+8 x+22 x^{2}+25 x^{3}+12 x^{4}+2 x^{5}$ and our number is $6!-8(5!)+22(4!)-25(3!)+12(2!)-$ $2(I!)=720-960+528-150+24-2=160$.

Computing Rook Polynomials

- This board does not break into disjoint pieces, but we can compute its rook polynomial.
- Any set of rooks either contains the red-x square or it doesn't.
- The ones that do are counted by the rook polynomial of the board we get by removing the red square and all squares in its row or column, multiplied by x to account for the rook on the red-x square.

Computing Rook Polynomials

- The second board has polynomial $(1+x)(1+2 x)$, so we get $(1+x)(2+x) x$.
- The sets that don't have the red-x square are counted by the rook polynomial of the third board, from just deleting the red x. This is $(1+3 x)$ $(1+2 x)$.
- Similar decomposition can work for any board. It's faster with the right choice of red-x square.

			x
		x	x
X	X	X	

			x
X	X		
			x
			x
X	X	X	

One More Example

- Here when we decompose on the red x, the second board has polynomial $(1+2 x)(1+2 x)(1+x)$.
- The third has $\left(1+3 x+x^{2}\right)^{2}(1+x)$, which we multiply by x to account for the red-x square.
- The sum works out to $1+8 x$ $+22 x^{2}+25 x^{3}+11 x^{4}+x^{5}$.
- The number of maps is $720-8(120)$ $+22(24)-25(6)+I I(2)-I=I 59$.

