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Functional Equations

® |f | have a function ao, a|,... defined by a
recurrence, it has an associated GF g(x) = ag
+ a;x + ax? + ..., and sometimes we can use

the recurrence to determine the GF

® |f we can relate g(x) to itself and to other
functions of x in a functional equation, we
may be able to solve this equation to
determine g(x)



Functional Equation Example

® Suppose | can determine that g(x) = x2g(x) - 2x.
Then | can treat g(x) as a single variable vy, giving y
= x%y - 2%, and then solve for y treating functions
of x alone as constants, getting y = -2x/(|-x?).

® Given an equation like (1-x?)[g(x)]? - 4xg(x) + 4x>
= 0, we can apply the quadratic formula. We have
ay? + by + ¢ = 0,with a = |-x%,b = -4x,and c =
4x2,

® This solves to y = (4x £ 4x?%)/2(1-x?), two
solutions from which we pick one matching ao.



The Pizza Problem Again

® Remember that if anis the number of pieces
we can make by n straight cuts of a convex
pizza,we had a; = | and a, = an.| + n.

® For every n with n > |, we have anx" = an.|x™!
+ nx". Summing these terms, we get g(x) - ao
= 2 1%(an-1x + nx") = xg(x) + x/(1-x?).
(Remember that 1/(1-x)?2 = | + 2x + 3x%2+ ...)

® So g(x) - | =xg(x) + x/(1-x)%, g(x)(1-x) = | +
x/(1-x)?,and g(x) = I/(1-x) + x/(1-x)3. This
solves to a, = | + C(n+1, 2) as we had before.



Fibonacci Again

® | et’s now solve the Fibonacci recurrence an =
an-1 + an2, with ag = a; = |. We let g(x) be the
sum for all n of anx" and then g(x) - ap - a1x is
the same sum for all n with n = 2, where the
recurrence holds.

® We get g(X) - a0 - 21X = 22°(an-1X" + an2X") S
X[g(x) - a0] + x%g(x).

® This gives g(x)(1-x-x?) = | or g(x) = I/(1-x-x?),
which we can solve by the quadratic formula.



Fibonacci Again

® The roots of 1-x-x2 =0 are & = (1++/5)/2 and
o2 = (1-4/5)/2, so that the denominator of g(x)
factors into (-0 1x)(1-0x2x).

® By the method of partial fractions, we write
|/(1-0ix)(1-02x) as y/(1-axi1x) + z/(]1-&2) and
solve for y and z to get the values y = o/+/5
and z = -&X2/+/5.

® Now I/(1-0x) is the GF for I+ox+0o2x*+.. .,
and |/(1-02x) is the GF for |+0x+0ax?+...



Fibonacci Again

® This means that g(x) = y/(1-Xix) + z/(1-02x)
is the GF for a, = yXx " + z2", just as we
found before.

® Of course, to find the value of aj0 we would
be much better off calculating ay, a3,...,aioin
order using the recurrence, rather than
evaluating the GF coefficient.

® We can use similar methods with any linear
recurrence.



Method of Partial Fractions

® | et’s take another look at using partial

fractions to solve general homogeneous
linear recurrences.

® We know that over the complex numbers, a

degree-r polynomial g(x) factors into the
product of r linear polynomials, with some
perhaps multiple.

® |f g(x) =0, any polynomial at all is equal to
one of degree at most r-1, by long division.



Method of Partial Fractions

® Suppose that g(x) = (1-&)(1-B)(1-Y)>
Consider any polynomial of the form A/(1-x)
+ B/(1-B) + (Cx+D)/(1-Y)2.

® By taking a common denominator, we can
show that this polynomial is equal to f(x)/g(x),
where f(x) has degree at most r-1.

® And given any such f(x), we can find A, B, C,
and D to put it in the other form. This
explains, for example, the An+B term in our
general solution when we have a double root.



Selection Without Repetition

® |n the spirit of solving more known problems
in new ways, let’s look again at the number of
ways to choose k objects from a set of n
objects, without repetition.

® Consider a family of GF’s go, g1, g2,... with gn(x)
= ano + an X + an2x? +... for each n. We'll let
ank be our desired number.

® We know that these coefficients satisfy the
recurrence rule ank = an-1k + an-1 k-1, with initial
conditions ano = | and agx = 0 for k > 0.



Selection Without Repetition

® For each n,gn(x) - | = 21" (an-1kX* + an-1 k-1X¥)
= gn-1(X) - |+ xgn-1(x).

® This yields a functional equation gn(x) =
(1 +x)gn-1(x), which solves to gn(x) = (I1+x)"
with the initial condition go(x) = I.

® So from the recurrence, we get a generating
function that we recognize by the binomial
theorem, so we know that a,x = C(n, k).



Catalan Numbers Again

® Placing parentheses to multiply n numbers
gave us the Catalan recurrence relation, with
an = ajan-1t...+an1a,20 = 0,and a; = |.

® Why is this? The first left parenthesis and its
matching right parenthesis enclose some
number i of the n numbers. For each i, there
are a; ways to group those first i numbers and
an-i ways to group the last n-i.



Catalan Numbers Again

® The parenthesizing sequence starts out a| =
l,a2 = |,a3 = 2,a4 = 5,a5 = |14,and ag = 42.

® [he Catalan recurrence describes a number

of combinatorial problems, with varying initial
conditions.

® |f | have an n-node rooted binary tree with |
nodes in its left subtree, it has n-i-1 nodes in
its right subtree. So if tn is the number of n-
node trees, we have that t, = toth.) + ... +
tn-1to, with to = t; = |, giving t2 = 2,t3 = 5,...
which is the same sequence shifted by one.



Catalan Numbers Again

® If g(x) = apta x+ayx?+...,the RHS is the
coefficient of x" in g(x)g(x) for n = 2,and we
get g(x) - aix - ao = g(x) - x = [g(x)]*

® Solving this quadratic equation gives g(x) = (|
+ +/(1-4x))/2. For the parenthesizing
sequence, we want to make g(0) = 0, so we

choose (1-/(1-4x))/2.



Generalized Binomial Theorem

® How can get coefficients for a GF like +/(1-4x)?

® This involves a generalization of the binomial
theorem, involving a generalization of binomial
coefficients.

® We can still define (1+y)9, where q is any real
number (not necessarily an integer), as the sum
of C(q, n)y", where C(q, n) must be defined.

® We let c(q, n) be q(qg-1)(g-2)...(g-n+1)/n!, just as
for integers.



Generalized Binomial Theorem

® What does this tell us when g = 1/2? We get
C(1/2,0) = 1,C(1/2, 1) = 1/2,C(1/2,2) = (1/2)
(-1/2)/2! = -1/8,and in general C(1/2,n) = | (-1)
(-3)(-5)...(-(2n-3))/2"n!.

® This lets us evaluate (1-4x)'2. We get the sum
over all n of C(1/2, n)(-4)" = -1(1)(3)...(2n-3)2"/n!.

® Some fooling around with powers of to gets us
from this to the fact that the n* Catalan number
is (1/n)C(2n-2, n-1). I'll omit the details here.



Simultaneous Recurrences

® Example 5 of Tucker’s section 7.5 attacks a
system of simultaneous recurrences: an = an-|
+ bn-1 + Ch-1, bn = 3n-! . Cn-1,and cp = 3n-! . bn-1.

® These arose from the example of ternary
strings of length n, where a;, is the number
with an even number of O’s and an even
number of |’s, b, the number with even O’s
and odd |’s, and ¢, the number with odd O’s
and even |’s. (The fourth case is 3"-an-bn-Cn.)



Simultaneous Recurrences

We also have initial conditions ag = |, bg = 0,
and co = 0.

Let A(x), B(x), and C(x) be the GF’s for these
three sequences.

Tucker goes through a derivation where he
expresses each of these GF’s as a function of
the others, for example A(x) - | = xA(x) +
xB(x) + xC(x) and B(x) - | = x/(1-3x) - xC(x).
Having each of B and C in terms of the other
lets him solve for those two, then find A.



