
COMPSCI 575/MATH 513 T 
Combinatorics and Graph Theory

Lecture #23: Recurrences
(Tucker Sections 7.1 and 7.2 (with a bit of 6.5))
David Mix Barrington
4 November 2016



Recurrences 

• Highlights of Section 6.5

• Some Common Recurrences

• Stairs and Fibonacci Numbers

• Some Examples

• Placing Parentheses

• Systems of Recurrences

• Divide and Conquer



Section 6.5 of Tucker

• I’m mostly skipping this section, but there are 
two tricks for generating functions we ought 
to take note of.

• If g(x) is the sum over r of arxr, what happens 
when we take the derivative of g(x)? By the 
rules we learned in a calculus course, gʹ(x) is 
the sum over r of rarxr-1.  This makes xgʹ(x) 
the sum over r of rarxr.  



Section 6.5 of Tucker

• We’ve taken the GF for the sequence a0, a1, 
a2,… and made a GF for the sequence 0, a1, 
2a2, 3a3,…, multiplying the entry ar by r.

• Starting from the GF for 1,1,1,… which is 
1(1-x), we can make GF’s for any fixed 
polynomial in r by using this trick to get a GF 
for any desired fixed power rn.



Section 6.5 of Tucker

• The other trick in this section is to take a GF 
for a0, a1, a2,… and make a GF for s0, s1, s2,…, 
where each sr  is the sum for i from 0 to r of ai.

• All we need to do is take g(x) = a0+a1x+a2x2+… 
and divide it by 1-x to get a new series h(x).

• Letting f(x) = 1/(1-x), our new h(x) = g(x)f(x), 
and each coefficient hr is just the sum over all i 
from 0 to r of ai times 1, since the xr-i coefficient 
of f(x) is just 1.



What is a Recurrence?

• A recurrence is a definition of a sequence a0, 
a1, a2,… where we define a0 directly and 
define all other values ar in terms of zero or 
more aj’s, where each j is less than r.

• By induction, each value ar is properly defined.  
The base case of r=0 is given since a0 is 
defined, and if we know all aj for j < r, the 
definition gives us a value for ar.



Some Common Recurrences

• A linear recurrence defines an  as a linear 
function of the most recent aj’s.  The general 
form is an = c1an-1 + c2an-2 + … + cran-r.  If r 
=1 this is just a geometric series, with an = 
a0(c1)n.  For larger r, we need r base cases a0,
…, ar-1 rather than just a0.

• The Fibonacci recurrence, defined by f0 = 0, 
f1 = 1, and fn = fn-1 + fn-2 for n > 1, is an 
example of a linear recurrence with r = 2.



Some Common Recurrences

• A recurrence might include a fixed function 
of n as well as the previous values aj.  For 
example, we could have an = can-1 + f(n), for 
any function f.

• We could mix up the values, as in the 
recurrence an = a0an-1 + a1an-2 + … + an-1a0.

• Or we could define a two-dimensional 
recurrence, by a rule like an,m = an-1,m + an-1,m-1.  

(Recognize this one?)



Recurrences in General

• A recurrence fully defines a function, and may 
or may not give the most efficient way to 
compute an arbitrary value an.

• A closed form for a recurrence is a function 
of n only, not referring to other values of the 
sequence.  We will see a number of general 
techniques for finding closed forms of 
recurrences, and for finding recurrences for 
functions given by closed forms.



Stairs and Fibonacci Numbers

• Suppose an elf is ascending a staircase of r 
steps, and in one jump it can move one or 
two steps.  Define ar to be the number of 
different ways it can reach the top.

• Clearly a0 = a1 = 1, and a2 = 2 as it could take 
the steps one by one or both at once.

• In general ar = ar-1 + ar-2, since the last jump 
must come from either step r-1 or step r-2.

• The sequence goes 1, 1, 2, 3, 5, 8, 13, 21, 34, …



Example: Cutting Pizzas

• In COMPSCI 250 we look at the following  
problem as an example of induction: What is 
the maximum number of pieces you can get 
from a convex pizza by n straight-line cuts?

• We can never do better than doubling the 
number, so a0 = 1, a1 = 2, and a2 = 4 are clearly 
optimal.  But eight pieces with three cuts 
doesn’t appear possible (in the plane), so we 
need an argument to prove that a3 = 7. 



Example: Cutting Pizzas

• The nth straight cut can pass through at most 
n existing pieces, because it can cross each of 
the earlier cuts at most once.

• This gives us a rule that an ≤ an-1 + n, and in 
fact an = an-1 + n is achievable if the cuts are 
in general position.

• From the base case of a0 = 1, we can solve 
this recurrence to get an = (n2+n+1)/2.



Example: Tower of Hanoi

• In this puzzle we want to move the n disks 
from A to C, moving one disk at a time and 
never putting a larger disk on top of a smaller.

• There is a recursive solution that moves n 
disks by twice moving n-1 disks, and adding 
one more move.  We get a recurrence a0 = 0, 
an = 2an-1 + 1, which solves to an = 2n - 1.



Examples From Finance

• If we put $1000 per year into a savings 
account that pays 2% annual interest, our 
balance after n years is given by the 
recurrence a0 = 0, an = (1.02)an-1 + 1000.

• If I borrow $300,000 at 4% annual interest 
and pay back $2000 per month, my balance is 
given by a0 = 300000 and, for all n > 0,  an = 
(1+(0.04)/12)an-1  - 2000.  Normally the 
monthly payment is chosen to make an = 0 
when n is some fixed number of months.



Counting Revisited

• Our familiar counting functions can each be 
alternatively defined by recurrences:

• Sequences of length r from n choices: a0 = 1, 
ar = nar-1.

• Permutations: P(n, n) = 1, P(n, r) = nP(n-1, r-1).

• Combinations: C(n, 0) = C(n, n) = 1, C(n, r) = 
C(n-1, r) + C(n-1, r-1), where the last 
equation follows from analyzing the cases of 
the first item being in or out of the set. 



Messier Counting

• Suppose we put n identical balls into k distinct 
boxes, with between 2 and 4 balls per box.  We 
can model this with a recurrence an,k = an-2,k-1 + 
an-3,k-1 + an-4,k-1 with the correct initial 
conditions.  We also know how to solve this 
problem with generating functions.

• What if the balls come in three colors?  Now 
we have a recurrence an,k = 6an-2,k-1 + 10an-3,k-1 + 
15an-3,k-1 when we take into account the 
number of ways to fill boxes with 2, 3, or 4 balls.



Placing Parentheses

• If I have a product of n items, how many ways 
are there to parenthesize them as binary 
products?  Let an be this number, so a2 = 1 
and a3 = 2 for (x1x2)x3 and x1(x2x3).

• The general rule is that an is the sum, over all 
i, of aian-i.  This is because the last of our 
multiplications must be between the product 
of the first i items and the product of the last 
n-i.  (So we need to define a1, and the value 
that makes sense is a1 = 1, along with a0 = 0.) 



Systems of Recurrences

• Sometimes we need more than one 
recurrence to solve a counting problem.

• Consider strings over {a,b,c} with an even 
number of b’s and an odd number of c’s.

• If f(n) is the number of such strings of length 
n, we have that f(n) = f(n-1) + g(n-1) + h(n-1), 
where g(n) is the number with odd numbers 
of both b’s and c’s, and h(n) the number with 
even numbers of each.



Systems of Recurrences

• Then g(n), for example, is g(n-1) + f(n-1) + 
i(n-1), where i(n) is the number with an even 
number of b’s and an odd number of c’s.

• Each of the four functions is defined by a 
recurrence using itself and two of the others.

• By induction on n, assuming we define f(0), 
g(0), h(0), and i(0) to each be 1, we have well-
defined and correct values f(n), g(n), h(n), and 
i(n) for each n.



Divide and Conquer

• Many algorithms take a divide and conquer 
approach, reducing a problem to similar 
problems with smaller parameters.  Much of 
COMPSCI 311 is spent analyzing the resources 
used by such algorithms, and recurrences are a 
key tool in this analysis.

• If an is the number of steps to solve a problem 
of size n, we often get a recurrence of the form 
an = can/2 + f(n), where c is a constant and f(n) is 
the time to split and merge the subproblems.



Simple D&C Examples

• If c = 1 and f(n) is constant, we have an = an/2 
+ d, which solves to an = dlog2(n) + A, where 
A is a constant chosen to fit the initial 
conditions.  We assume here that n is a 
power of 2, to avoid ceilings and floors.

• If c = 2 and f(n) is constant, we have an = 2an/2 
+ d, which solves to an = An - d.  Our 3n/2 - 2 
steps to find max and min fits into this case.

• If c = 2 and f(n) = dn, we have an = 2an/2 + dn, 
which solves to an = dn(log2n + A).



Fast Multiplication

• Normally multiplying two n-bit numbers 
would require O(n2) bit multiplications.

• By adding some cheaper additions, though, we 
can do it with fewer multiplications.

• Write the numbers w1 and w2  as u1v1 and 
u2v2, where the u’s and v’s are n/2 bit 
numbers.  Then w1 × w2 = (u1×u2)2n + [(u1×v2) 
+(v1×u2)]2n/2 + (v1×v2).  We have four 
products of n/2-bit numbers.



Fast Multiplication

• (u1×u2)2n + [(u1×v2) +(v1×u2)]2n/2 + (v1×v2) 
has four products of n/2-bit numbers.

• But if we compute u1×u2, v1×v2, and (u1+v1) × 
(u2+v2), using only three multiplications, we 
can get all three terms we need by addition.

• Our number of multiplications satisfies the 
recurrence an = 3an/2, which turns out to 
solve to an = nlog 3  = n1.585…, much better than 
n2.  Of course there are complications like 
the time for the additions.



The CLRS Master Theorem

• In COMPSCI 311 we learn a theorem called 
the Master Theorem in the popular CLRS 
textbook.  It gives a solution to the recurrence 
an = can/k + f(n), which applies when we divide 
the size-n problem into c problems of size n/k 
each, with f(n) overhead to split the problems 
and merge the solutions.

• The solutions are given in big-O form, befitting 
a course where we usually regard resource 
bounds this way.



The CLRS Master Theorem

• We have an = can/k + f(n).

• The result depends on the relationship 
between f(n) and g(n) = nlog c, where the log is 
base k.  The statement below is approximate.

• If f(n) = o(g(n)), then an = ϴ(g(n)).

• If f(n) = ϴ(g(n)), then an = ϴ(g(n)log n).

• If f(n) = ω(g(n)), then an = ϴ(f(n)).


