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Combinatorics

• We turn now to our study of counting 
problems, combinatorics. 

• Our most fundamental principle is to count a 
set by finding a bijection between it and a set 
of known size.

• We analyze sets by expressing them as 
combinations of other sets that are easier to 
analyze.  There are two main rules to allow 
this.



Addition and Multiplication

• If A and B are disjoint sets, meaning that A ∩ 
B = ∅, we know that |A ∪ B| = |A| + |B|.

• If A and B are any finite sets, we can count 
their direct product, as |A × B| = |A|⋅|B|.

• Of course these two rules are easy to prove 
by induction on the size of one set.



Basic Examples

• We can use these two rules to solve some 
basic problems.

• If we roll two six-sided dice (“roll 2D6”) 
there are 62 = 36 ways in which they may 
come up, from 11 to 66.  Exactly four of these 
add to 9, for example, so the probability of 
throwing 9 is 4/36 = 1/9.

• To compute probabilities it is important that 
we find the set of events that are equally 
likely, here sequences of individual throws.



Basic Examples

• Tucker asks about choosing a pair of books 
from a set of 5 Spanish, 6 French, and 8 
Transylvanian books.  The total number of 
pairs is (19×18)/2 = 171, since there are 19 
ways to choose the first book, 18 ways to 
choose a different second book, and this 
procedure counts each pair exactly twice.

• To get books not in the same language, we 
could count (5×6) + (5×8) + (6×8) for the 
three ways to do it, or just subtract off the 
pairs in the same language from 171.



Counting Strings

• From the product rule we can easily see that 
there are kn strings of length exactly n from a k-
letter alphabet.  There are k0 + k1 + … + kn 
strings of length at most n, sometimes written k≤n.

• Of these strings, the number with no repeated 
letter is k(k-1)…(k-n+1), also written kn and 
called “k to the n falling”.

• These latter strings have n! representatives of 
each of the sets of n letters in the alphabet.



Four Counting Problems

• Choosing k items out of a set of n, we can care 
about order or not, allow repeats or not.

• First problem: Order counts, repeats, direct 
use of Product Rule gives nk.

• Second Problem: Order counts, no repeats, 
successive choices give P(n, k) = n!/(n-k)!, also 
called “n to the k falling” or nk.

• Third Problem: No order, no repeats, counting 
subsets, correcting for overcount gives C(n, k).



Binomial Coefficients

• C(n, k) is P(n, k)/k! or n!/k!(n-k)!.

• Easiest calculation for C(6, 3), for 
example, is 6⋅5⋅4/1⋅2⋅3 = 20.

• Pascal’s (or Yang Hui) Triangle 
holds the value of C(n, k) as 
entry k in row n.

• Various identities can be 
observed from the triangle, and 
we will prove them later.



Counting Multisets

• Fourth Problem: No order, repeats allowed.

• We are counting multisets of size k taken 
from a set of size n.

• The “stars and bars” argument forms a 
bijection between such a multiset and a string 
of k stars and n-1 bars.  The third problem’s 
solution tells us there are C(n+k-1, k) of 
these.



Stars and Bars

• Let’s look at n = 5 and k = 3.  A multiset can 
be described by a sequence of numbers in 
{1,2,3,4,5} in sorted order.  225, for example, 
represents two copies of 2 and one of 5.

• To get a binary string from 225, we take a 0 
for each entry and put a 1 between each pair 
of values.  So 225 becomes 1001110.

• To go the other way, we convert each 0 in the 
binary string to a number based on the 
number of 1’s occurring before it.



Complications

• We can make these problems more complicated 
by insisting that a particular letter come in a 
particular position, or that it occur a certain 
number of times in the multiset, or that certain 
letters are adjacent.

• In each case we match the new problem to one 
of standard type.  For example, if we want 
strings from {a,b,c,d,e} containing at least one ab 
substring, we look at abxxx, xabxx, xxabx, and 
xxxab, correcting for any double counting.



Repeated Letters

• Tucker asks about counting the anagrams of 
the word SYSTEMS, meaning permutations of 
the multiset.

• If the three S’s were different, there would be 
7!, so the correct number is 7!/3! = 840 when 
we correct for overcounting.

• How many have the three S’s together?  Just 
the 5! permutations of {SSS, Y, T, E, M}.



Poker Problems

• With dice it is sequences that are equally 
likely, while with cards it is sets.

• A poker hand is a subset of the 52 cards 
with exactly five elements.  There are (52 
choose 5) = 2598560 of these.

• A full house is a set with three cards of one 
rank and two of another. (There are 13 ranks 
with four cards each.)



Poker Problems

• To count full houses, we pick the rank with 
three (13), then the rank with two (12), then 
which three ((4 choose 3) = 4), then which two 
((4 choose 2) = 6, for 13×12×4×6 = 3744.

• To count two-pair hands we choose which 
ranks have pairs ((13 choose 2) = 78), which 
pair of each rank (62 = 36), which rank for the 
odd card (11) and which odd card (4), for 
78×36×11×4 = 123552.

• Look carefully at the double-counting!



Voter Power

• Consider a committee (or an electoral 
college) where different members have 
different numbers of votes, and decisions are 
made by weighted majority.

• You might think that voting power was 
proportional to the number of votes, but 
consider a weighting of 4, 4, 4, 4, and 1 where 
any three of the five members will outvote 
the other two. 



Voter Power

• A better gauge of voter power is the 
Shapley-Shubik index, similar to the tipping-
point probability used this season by 
fivethirtyeight.com.

• Look at the n! ways to order the voters, and 
determine which is the median voter in 
each, the one who will complete a majority if 
the voters are added in that order.

• The index of voter v is the fraction of orders 
in which v is the median voter.



Voter Power

• Clearly everyone has equal power in the 
4,4,4,4,1 weighting.

• Tucker looks at 2,2,1,1,1, where there are 16 
orders putting each weight-1 person in the 
median, and 36 for each weight-2 person.

• The six New England states are weighted 
11,7,4,4,3,2 in the electoral college (if we 
ignore ME’s split votes).  Let’s see the relative 
power of voters with these weights.



Voter Power

• MA (with 11) is the median 1/5 of the time if 
it is second or fifth, and all the time if it is 
third or fourth, for an index of 40%.

• CT (with 7) is the median 1/5 of the time if it 
is second or fifth, and 2/5 if is third or fourth, 
for an index of 20%.

• Each other state is median if it is third or 
fourth, with MA before it and CT after it, for 
an index of 10%.  The four small states have 
equal voting power.


