
CMPSCI 575/MATH 513
Combinatorics and Graph Theory

Lecture #12: Minimum Spanning Trees
(Tucker Section 4.2)
David Mix Barrington
3 October 2016

Minimum Spanning Trees

• Definitions and Motivation

• The Prim and Kruskal Algorithms

• An Example

• Correctness of the Algorithms

• Implementation of the Algorithms

• Using an MST to Approximate TSP

• A Better Approximation

Definitions and Motivation

• Suppose we have a weighted undirected
graph where nodes are towns, edges are
roads, and weights are the cost of plowing a
road.

• We have a limited budget and can only plow
some of the roads, but we need to make it
possible to get from any town to any other.

• We want a subset of the edges forming a tree
containing all the nodes, a spanning tree.

Minimum Spanning Trees

• A spanning tree has a weight, the sum of the
weights of its edges. A minimum spanning tree
is one such that no other has less weight.

• There may be more than one MST for a given
graph. In fact, if each edge has weight 1, then
every spanning tree is an MST.

• We’ll assume for the rest of the lecture that
the original graph is connected and that all the
weights are positive.

Two Algorithms for MST
• We’ll present two algorithms to find an MST.

Both are greedy algorithms, considering all
the edges of a certain type and taking the
edge of minimum weight.

• Prim’s Algorithm builds a single tree by
starting with one node, then repeatedly
adding the cheapest edge that connects a
node in the tree to one outside of it.

• Kruskal’s Algorithm always takes the
cheapest edge that does not form a cycle
with the existing edges.

An Example

• Here’s a weighted
graph with 25 nodes
and 40 edges.

• We’ll run both
algorithms in turn to
get a minimum
spanning tree for it.

• We’ll start Prim with
the first 1-edge.

36 72

1 37

8

2

5
32 4 5 7

31

5

2

1

24

1043

5

33
2887

2
3

9 5 6
244

An Example

• The nodes in green
and edges in red are in
the tree.

• Prim goes on to take
edges with one green
endpoint, cheapest
first. The next five it
takes, in order 2, 4, 2, 1,
2, are shown in green.

36 72

1 37

8

2

5
32 4 5 7

31

5

2

1

24

1043

5

33
2887

2
3

9 5 6
244

An Example

• At this point we have a
choice of size-3 edges.

• That choice doesn’t
affect the tree, but a
later one could.

• It turns out that either
of the purple edges
could be in the MST.

36 72

1 37

8

2

5
32 4 5 7

31

5

2

1

24

1043

5

33
2887

2
3

9 5 6
244

An Example

• It turns out that either
of the purple edges
could be in the MST.

• Once we make this
choice, we’ll get the
next edges in green.

36 72

1 37

8

2

5
32 4 5 7

31

5

2

1

24

1043

5

33
2887

2
3

9 5 6
244

An Example

• Now there are two
ways to get the last
two nodes, both with
the same cost.

• We’ve used 24 edges
of total weight 65.

36 72

1 37

8

2

5
32 4 5 7

31

5

2

1

24

1043

5

33
2887

2
3

9 5 6
244

An Example

• To begin Kruskal, we
take all the edges of
weight 1 because we
don’t form a cycle.

• We start building up
connected components.

• The weight-2 edges also
don’t form any cycle.

36 72

1 37

8

2

5
32 4 5 7

31

5

2

1

24

1043

5

33
2887

2
3

9 5 6
244

An Example

• The weight-2 edges also
don’t form any cycle.
(We’ve now added
them in the diagram.)

• But the 3-edges will.
We can’t add both the
vertical 3-edges in
purple, but we can add
either one.

36 72

1 37

8

2

5
32 4 5 7

31

5

2

1

24

1043

5

33
2887

2
3

9 5 6
244

An Example

• Here we did not take
the purple 3-edge
because we took the 3-
edge to its left first.

• Now we have only 7
connected components
left. The five 4-edges
don’t form cycles, and
reduce us to only two.

36 72

1 37

8

2

5
32 4 5 7

31

5

2

1

24

1043

5

33
2887

2
3

9 5 6
244

An Example

• We’ll complete the
spanning tree with one
of the two 5-edges with
one red and one green
endpoint.

• There were four
possible trees we might
have produced, each of
total weight 65.

36 72

1 37

8

2

5
32 4 5 7

31

5

2

1

24

1043

5

33
2887

2
3

9 5 6
244

Correctness of Prim

• Assume (for simplicity) that all the edge
weights are distinct.

• We’ll get a contradiction from the
assumption that some tree Tʹ has smaller
weight than the tree T* produced by Prim.

• Let e = (u, v) be the first edge not in Tʹ that
we put into T*, and consider the point at
which we did so. Let X be the nodes in T* at
that point. We know that e is cheaper than
any other edge with one endpoint in X.

Correctness of Prim

• Since Tʹ is a spanning tree, there is a path
from u to v in it, and this path must leave X
by some edge eʹ.

• Since eʹ has one endpoint in X and one out of
it, it must have weight larger than that of e.

• Now replacing eʹ with e gives a spanning
tree with weight less than that of Tʹ, a
contradiction. (On HW#3 you will show
that this replacement always yields a tree.)

Correctness of Kruskal
• We can similarly show that Kruskal is correct.

Again consider an MST Tʹ. As Kruskal adds
edges to its edge set, e = (u, v) be the first edge
it adds that is not in Tʹ, and let Z be the edges in
the set at that point (before e is added).

• Node u and v are in different connected
components of the forest Z. Tʹ must have a
path from u to v, and this path must contain an
edge eʹ that connects two components of Z.

• Once again replacing eʹ with e in Tʹ gives a
spanning tree smaller than the alleged MST Tʹ.

Implementation and Time

• How do we implement these algorithms?

• For Prim we can use a priority queue like that
in UCS. We put edges into the PQ when they
are found. At each stage we start pulling out
the minimum-weight edge in the PQ, rejecting
them it if both endpoints are in X, until we
find exactly the edge we need.if not it is the
edge needed by Prim.

• Overall we have O(e) PQ operations for O(e
log e) total time.

Implementation and Time

• With Prim we could tell whether to reject an
edge using a flag on each vertex to say
whether it was in X.

• But with Kruskal we want to reject an edge if
it forms a cycle with existing edges, which
happens if the endpoints are in the same
connected component of the forest made by
the existing edges.

Implementation and Time

• This is the dynamic transitive closure
problem, to maintain the set of connected
components as new edges are introduced.

• We don’t want to, say, DFS the graph again
for each new edge.

• In CS 311 you will probably see the union-
find algorithm, which solves this problem in
nearly linear time. With that, the running
time of Kruskal is also about O(e log e).

Applying MST to TSP

• Recall that Tucker presented an algorithm to
approximate the least-weight Hamilton circuit
in a weighted graph, getting a tour whose
weight was at most twice the optimal weight.
The weights were symmetric and obeyed the
triangle inequality.

• In such a graph, we can always shortcut two
edges (u, v) and (v, w) with a single edge (u, w),
without adding weight.

Applying MST to TSP

• Consider an MST of this weighted graph.
Change each edge into two directed edges,
and make an Euler tour E of the resulting
directed graph.

• The weight of E is twice that of the MST. And
since dropping any edge from the optimal
tour C* gives a spanning tree, the weight of E
is at most twice that of C*.

• Shortcutting E leads to a Hamilton tour with
no more weight than that of E.

A Better Approximation

• The nodes O of odd degree in the MST must
have a perfect matching. (Why?) Later we
will see how to find the minimum-weight
matching in polynomial time.

• If we add the matching edges to the MST, we
get a graph where all vertices have even
degree, and there must be an Euler tour.
Shortcutting this tour gets us a Hamilton
tour.

A Better Approximation

• We already know that the weight of the MST
is less than that of the optimal tour C*.

• The nodes of O divide C* into an even
number of paths. If we two-color these, one
color set has weight less than half that of C*.
And the shortcutting of this is a matching
with no more weight.

• So the total weight of our eventual Hamilton
tour is at most 3/2 that of C*.

