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Definitions and Motivation

• Suppose we have a weighted undirected 
graph where nodes are towns, edges are 
roads, and weights are the cost of plowing a 
road.

• We have a limited budget and can only plow 
some of the roads, but we need to make it 
possible to get from any town to any other.

• We want a subset of the edges forming a tree 
containing all the nodes, a spanning tree.



Minimum Spanning Trees

• A spanning tree has a weight, the sum of the 
weights of its edges.  A minimum spanning tree 
is one such that no other has less weight.

• There may be more than one MST for a given 
graph.  In fact, if each edge has weight 1, then 
every spanning tree is an MST.

• We’ll assume for the rest of the lecture that 
the original graph is connected and that all the 
weights are positive.



Two Algorithms for MST
• We’ll present two algorithms to find an MST.  

Both are greedy algorithms, considering all 
the edges of a certain type and taking the 
edge of minimum weight.

• Prim’s Algorithm builds a single tree by 
starting with one node, then repeatedly 
adding the cheapest edge that connects a 
node in the tree to one outside of it.

• Kruskal’s Algorithm always takes the 
cheapest edge that does not form a cycle 
with the existing edges.



An Example

• Here’s a weighted 
graph with 25 nodes 
and 40 edges.

• We’ll run both 
algorithms in turn to 
get a minimum 
spanning tree for it.

• We’ll start Prim with 
the first 1-edge.
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An Example

• The nodes in green 
and edges in red are in 
the tree.

• Prim goes on to take 
edges with one green 
endpoint, cheapest 
first.  The next five it 
takes, in order 2, 4, 2, 1, 
2, are shown in green. 
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An Example

• At this point we have a 
choice of size-3 edges.

• That choice doesn’t 
affect the tree, but a 
later one could.

• It turns out that either 
of the purple edges 
could be in the MST.
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An Example

• It turns out that either 
of the purple edges 
could be in the MST.

• Once we make this 
choice, we’ll get the 
next edges in green.
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An Example

• Now there are two 
ways to get the last 
two nodes, both with 
the same cost.

• We’ve used 24 edges 
of total weight 65.
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An Example

• To begin Kruskal, we 
take all the edges of 
weight 1 because we 
don’t form a cycle.

• We start building up 
connected components.

• The weight-2 edges also 
don’t form any cycle.
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An Example

• The weight-2 edges also 
don’t form any cycle. 
(We’ve now added 
them in the diagram.)

• But the 3-edges will.  
We can’t add both the 
vertical 3-edges in 
purple, but we can add 
either one.
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An Example

• Here we did not take 
the purple 3-edge 
because we took the 3-
edge to its left first.

• Now we have only 7 
connected components 
left.  The five 4-edges 
don’t form cycles, and 
reduce us to only two.
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An Example

• We’ll complete the 
spanning tree with one 
of the two 5-edges with 
one red and one green 
endpoint.

• There were four 
possible trees we might 
have produced, each of 
total weight 65.
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Correctness of Prim

• Assume (for simplicity) that all the edge 
weights are distinct.

• We’ll get a contradiction from the 
assumption that some tree Tʹ has smaller 
weight than the tree  T* produced by Prim.

• Let e = (u, v) be the first edge not in Tʹ that 
we put into T*, and consider the point at 
which we did so.  Let X be the nodes in T* at 
that point.  We know that e is cheaper than 
any other edge with one endpoint in X.



Correctness of Prim

• Since Tʹ is a spanning tree, there is a path 
from u to v in it, and this path must leave X 
by some edge eʹ.  

• Since eʹ has one endpoint in X and one out of 
it, it must have weight larger than that of e.

• Now replacing eʹ with e gives a spanning 
tree with weight less than that of Tʹ, a 
contradiction.  (On HW#3 you will show 
that this replacement always yields a tree.) 



Correctness of Kruskal
• We can similarly show that Kruskal is correct.  

Again consider an MST Tʹ.  As Kruskal adds 
edges to its edge set, e = (u, v) be the first edge 
it adds that is not in Tʹ, and let Z be the edges in 
the set at that point (before e is added).

• Node u and v are in different connected 
components of the forest Z.  Tʹ must have a 
path from u to v, and this path must contain an 
edge eʹ that connects two components of Z.

• Once again replacing eʹ with e in Tʹ gives a 
spanning tree smaller than the alleged MST Tʹ.



Implementation and Time

• How do we implement these algorithms?

• For Prim we can use a priority queue like that 
in UCS.  We put edges into the PQ when they 
are found.  At each stage we start pulling out 
the minimum-weight edge in the PQ, rejecting 
them it if both endpoints are in X, until we 
find exactly the edge we need.if not it is the 
edge needed by Prim.  

• Overall we have O(e) PQ operations for O(e  
log e) total time.



Implementation and Time

• With Prim we could tell whether to reject an 
edge using a flag on each vertex to say 
whether it was in X.  

• But with Kruskal we want to reject an edge if 
it forms a cycle with existing edges, which 
happens if the endpoints are in the same 
connected component of the forest made by 
the existing edges.



Implementation and Time

• This is the dynamic transitive closure 
problem, to maintain the set of connected 
components as new edges are introduced.

• We don’t want to, say, DFS the graph again 
for each new edge.

• In CS 311 you will probably see the union-
find algorithm, which solves this problem in 
nearly linear time.  With that, the running 
time of Kruskal is also about O(e log e).



Applying MST to TSP

• Recall that Tucker presented an algorithm to 
approximate the least-weight Hamilton circuit 
in a weighted graph, getting a tour whose 
weight was at most twice the optimal weight. 
The weights were symmetric and obeyed the 
triangle inequality.

• In such a graph, we can always shortcut two 
edges (u, v) and (v, w) with a single edge (u, w), 
without adding weight.



Applying MST to TSP

• Consider an MST of this weighted graph.  
Change each edge into two directed edges, 
and make an Euler tour E of the resulting 
directed graph.

• The weight of E is twice that of the MST.  And 
since dropping any edge from the optimal 
tour C* gives a spanning tree, the weight of E 
is at most twice that of C*.

• Shortcutting E leads to a Hamilton tour with 
no more weight than that of E.



A Better Approximation

• The nodes O of odd degree in the MST must 
have a perfect matching.  (Why?) Later we 
will see how to find the minimum-weight 
matching in polynomial time.

• If we add the matching edges to the MST, we 
get a graph where all vertices have even 
degree, and there must be an Euler tour.  
Shortcutting this tour gets us a Hamilton 
tour.



A Better Approximation

• We already know that the weight of the MST 
is less than that of the optimal tour C*.

• The nodes of O divide C* into an even 
number of paths.  If we two-color these, one 
color set has weight less than half that of C*. 
And the shortcutting of this is a matching 
with no more weight.

• So the total weight of our eventual Hamilton 
tour is at most 3/2 that of C*.


