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Review of Sorting Algorithms 

• Today’s brief section of Tucker deals with 
sorting algorithms and the use of trees to 
analyze them.

• The sorting problem is to take an array of n 
items and move the items within the array so 
that they are in order.

• A general (comparison-based) sorting 
algorithm will work on any data type that 
supports a comparison operation.



Review of Sorting Algorithms 

• We will assume for simplicity that there are 
no equal elements.

• Typically we count the comparison 
operations as they are the most expensive.

• The simplest sorting algorithms, Insertion and 
Selection, take O(n2) comparisons in the 
worst case.  (In fact exactly n(n-1)/2.)

• In CS 187 and CS 311 we look at several 
algorithms that sort with O(n log n).



Review of Sorting Algorithms 

• MergeSort splits the array in half, sorts each 
half recursively, and merges the results.  We 
can make a tree of subarrays, halving in size as 
we go down each level, with depth log n.

• Merging takes O(n) comparisons (you’ll look 
at the exact number on HW#3), so each 
merge on level i takes O(n/2i) comparisons. 
This amounts to O(n) on each level or O(n 
log n) total.



Review of Sorting

• HeapSort puts the items in a tree structure 
where each parent comes before both of its 
children.  Of course this tree has depth log n.

• In O(log n) operations, it is possible to either 
(a) remove the root item and fix the 
structure, or (b) insert a new item and fix the 
structure.

• Simply put the items in one by one, then take 
them out one by one, and they are sorted.



Decision Trees for Sorting

• These algorithms each give an O(n log n) 
upper bound on the number of comparisons 
needed to sort.  We’ll use decision trees to 
get a matching lower bound.

• A decision tree has a node for each point in 
the algorithm where we compare two inputs.  
The two children of the node represent the 
two outcomes of the comparison.  Leaf nodes 
represent outcomes where we know the 
entire order of the items.



Decision Trees for Sorting

• Note that a decision tree can represent any 
comparison-based algorithm, no matter what 
internal data it uses or how it decides which 
items to compare.  Since the tree need not 
be arranged on any systematic basis, we call 
our argument a non-uniform lower bound.

• Any sorting algorithm yields a decision tree.  
For the algorithm to be correct in the worst 
case, it must be prepared to give any of the n! 
possible answers.



The Sorting Lower Bound

• If the number of leaves is n!, the height of 
tree must be at least log(n!)

• What is log(n!)? It’s easy to see that log(n!) ≤ 
log(nn) = n log n. But note also that log(n!) ≥ 
log((n/2)n/2) = (n/2)(log n - 1).  This proves 
log(n!) = Θ(n log n).

• Calculus estimates the sum for i from 1 to n 
of (ln i) as n((ln n) -1), telling us that n! is 
about (n/e)n.  Stirling’s Formula gives a closer 
estimate.



Adversary Arguments

• My father has been a programmer since the 
1950’s.  When I was young he had me write a 
computer program that purported to be an 
example of binary search.

• The program tells the user that it is thinking 
of a number in the range from 1 to 64, and 
invites them to make up to six guesses, after 
each of which it says “too high” or “too low”.

• But the user always fails, as the answers are 
consistent with a number they don’t guess.



Adversary Arguments

• This is an example of an adversary argument, 
showing that no possible algorithm can solve 
this guessing problem in the worst case.

• In general, you need ceiling(log(n+1)) guesses 
for n items. By creating an adversary that can 
choose a bad input based on the guesses, we 
show that a bad input exists.

• We can reframe the sorting lower bound in 
these terms. 



Adversary Arguments

• At first, n! possible orderings of the n items exist.  

• For each user comparison, the adversary gives the 
answer that is consistent with more orderings 
than the other.

• After the first guess, there are at least n!/2 
consistent orderings.  After g guesses, there are at 
least n!/2g.

• If g ≤ log(n!), there are two or more consistent 
orderings left, and the adversary picks one that the 
user didn’t. Thus the user fails in the worst case.  



Lower Bound for Max or Min
• Suppose the user just wants to find the 

maximum of the n items.  There are n 
possible answers, so any decision tree has n 
leaves and depth at least log n.  But we can 
prove a better bound with an adversary 
argument.

• If there are two or more items that are 
undefeated in comparisons, the adversary can 
pick one that the user doesn’t.  This must 
happen unless there have been at least n-1 
comparisons to create n-1 losses.



Lower Bound for Max and Min

• What if the user wants both max and min?

• We first pair up the items and make n/2 
comparisons (assume n is even).

• We then find the max of the winners and the 
min of the losers (n/2 - 1 each) for a total of 
3n/2 - 2.

• This is actually optimal, as we can show with 
an adversary argument.



Lower Bound for Max and Min
• The adversary maintains for categories of 

items:  A of untouched, B with wins and no 
losses, C with losses and no wins, and D with 
both wins and losses.

• We start with all n items in A, and we can 
beat the user at the end unless all but two 
items are in D (with one each in B and C).

• By picking winners of comparisons, we can 
make sure that the user needs n/2 to move 
the items from A to B and C, and n-2 more 
to get n-2 of them from B and C into D. 



The Median Problem
• These are examples of selection problems.  The 

hardest single selection problem is to find the 
median of the n elements.

• Again there are n possible answers, so decision 
trees give an Ω(log n) lower bound.

• An adversary argument gives an Ω(n) bound.

• It’s not obvious how to do it without sorting, but 
we can do it in O(n) on average by the main idea 
of QuickSort, and in O(n) deterministic time by a 
more complicated (and less practical) algorithm.


