
CMPSCI 575/MATH 513
Combinatorics and Graph Theory

Lecture #10: Sorting and Decision Trees
(Tucker Section 3.4)
David Mix Barrington
28 September 2016

Sorting and Decision Trees

• Review of Sorting Algorithms

• Decision Trees for Sorting

• The Sorting Lower Bound

• Adversary Arguments

• Lower Bound for Max or Min

• Lower Bound for Max and Min

• The Median Problem

Review of Sorting Algorithms

• Today’s brief section of Tucker deals with
sorting algorithms and the use of trees to
analyze them.

• The sorting problem is to take an array of n
items and move the items within the array so
that they are in order.

• A general (comparison-based) sorting
algorithm will work on any data type that
supports a comparison operation.

Review of Sorting Algorithms

• We will assume for simplicity that there are
no equal elements.

• Typically we count the comparison
operations as they are the most expensive.

• The simplest sorting algorithms, Insertion and
Selection, take O(n2) comparisons in the
worst case. (In fact exactly n(n-1)/2.)

• In CS 187 and CS 311 we look at several
algorithms that sort with O(n log n).

Review of Sorting Algorithms

• MergeSort splits the array in half, sorts each
half recursively, and merges the results. We
can make a tree of subarrays, halving in size as
we go down each level, with depth log n.

• Merging takes O(n) comparisons (you’ll look
at the exact number on HW#3), so each
merge on level i takes O(n/2i) comparisons.
This amounts to O(n) on each level or O(n
log n) total.

Review of Sorting

• HeapSort puts the items in a tree structure
where each parent comes before both of its
children. Of course this tree has depth log n.

• In O(log n) operations, it is possible to either
(a) remove the root item and fix the
structure, or (b) insert a new item and fix the
structure.

• Simply put the items in one by one, then take
them out one by one, and they are sorted.

Decision Trees for Sorting

• These algorithms each give an O(n log n)
upper bound on the number of comparisons
needed to sort. We’ll use decision trees to
get a matching lower bound.

• A decision tree has a node for each point in
the algorithm where we compare two inputs.
The two children of the node represent the
two outcomes of the comparison. Leaf nodes
represent outcomes where we know the
entire order of the items.

Decision Trees for Sorting

• Note that a decision tree can represent any
comparison-based algorithm, no matter what
internal data it uses or how it decides which
items to compare. Since the tree need not
be arranged on any systematic basis, we call
our argument a non-uniform lower bound.

• Any sorting algorithm yields a decision tree.
For the algorithm to be correct in the worst
case, it must be prepared to give any of the n!
possible answers.

The Sorting Lower Bound

• If the number of leaves is n!, the height of
tree must be at least log(n!)

• What is log(n!)? It’s easy to see that log(n!) ≤
log(nn) = n log n. But note also that log(n!) ≥
log((n/2)n/2) = (n/2)(log n - 1). This proves
log(n!) = Θ(n log n).

• Calculus estimates the sum for i from 1 to n
of (ln i) as n((ln n) -1), telling us that n! is
about (n/e)n. Stirling’s Formula gives a closer
estimate.

Adversary Arguments

• My father has been a programmer since the
1950’s. When I was young he had me write a
computer program that purported to be an
example of binary search.

• The program tells the user that it is thinking
of a number in the range from 1 to 64, and
invites them to make up to six guesses, after
each of which it says “too high” or “too low”.

• But the user always fails, as the answers are
consistent with a number they don’t guess.

Adversary Arguments

• This is an example of an adversary argument,
showing that no possible algorithm can solve
this guessing problem in the worst case.

• In general, you need ceiling(log(n+1)) guesses
for n items. By creating an adversary that can
choose a bad input based on the guesses, we
show that a bad input exists.

• We can reframe the sorting lower bound in
these terms.

Adversary Arguments

• At first, n! possible orderings of the n items exist.

• For each user comparison, the adversary gives the
answer that is consistent with more orderings
than the other.

• After the first guess, there are at least n!/2
consistent orderings. After g guesses, there are at
least n!/2g.

• If g ≤ log(n!), there are two or more consistent
orderings left, and the adversary picks one that the
user didn’t. Thus the user fails in the worst case.

Lower Bound for Max or Min
• Suppose the user just wants to find the

maximum of the n items. There are n
possible answers, so any decision tree has n
leaves and depth at least log n. But we can
prove a better bound with an adversary
argument.

• If there are two or more items that are
undefeated in comparisons, the adversary can
pick one that the user doesn’t. This must
happen unless there have been at least n-1
comparisons to create n-1 losses.

Lower Bound for Max and Min

• What if the user wants both max and min?

• We first pair up the items and make n/2
comparisons (assume n is even).

• We then find the max of the winners and the
min of the losers (n/2 - 1 each) for a total of
3n/2 - 2.

• This is actually optimal, as we can show with
an adversary argument.

Lower Bound for Max and Min
• The adversary maintains for categories of

items: A of untouched, B with wins and no
losses, C with losses and no wins, and D with
both wins and losses.

• We start with all n items in A, and we can
beat the user at the end unless all but two
items are in D (with one each in B and C).

• By picking winners of comparisons, we can
make sure that the user needs n/2 to move
the items from A to B and C, and n-2 more
to get n-2 of them from B and C into D.

The Median Problem
• These are examples of selection problems. The

hardest single selection problem is to find the
median of the n elements.

• Again there are n possible answers, so decision
trees give an Ω(log n) lower bound.

• An adversary argument gives an Ω(n) bound.

• It’s not obvious how to do it without sorting, but
we can do it in O(n) on average by the main idea
of QuickSort, and in O(n) deterministic time by a
more complicated (and less practical) algorithm.

