
CMPSCI 250: Introduction to
Computation

Lecture 7: Quantifiers and Languages
David Mix Barrington
7 February 2014

Quantifiers and Languages

• Quantifier Definitions

• Translating Quantifiers

• Types and the Universe of Discourse

• Some Quantifier Rules

• Multiple Quantifiers

• Languages and Language Operations

• Language Concatenation and Kleene Star

The Existential Quantifier

• Suppose that P(x) is a predicate, where x is a
variable of type T. For example, T might be a
set of dogs and P(x) might mean “dog x is a
poodle”.

• The quantified statement ∃x: P(x)
means “there exists a dog x such that x is a
poodle”, or “there is at least one poodle in
T”. The symbol “∃” is called the existential
quantifier.

Universal Quantifiers and Binding

• The quantified statement ∀x: P(x) means “for
all dogs x, x is a poodle” or “every dog in T is
a poodle”. The symbol ∀ is the universal
quantifier.

• Each quantifier binds a free variable, making
it a bound variable. Both the statements
∃x: P(x) and ∀x: P(x) are propositions, as they
have no free variables -- they are either true
or false once T and P are defined.

Translating Quantifiers

• We translate quantified statements into
English very carefully and mechanically -- after
making a first translation we can adapt to
something that sounds more natural.

• In translating “∃x: P(x)”, we say “there exists
an x” for “∃x”, “such that” for the colon, and
then translate P(x). If we want to emphasize
the type of x, we might say “there exists an x
of type T such that P(x) is true”. In our
example, this was “there exists a dog x such
that x is a poodle”.

Translating Quantifiers

• In translating “∀x: P(x)”, we say “for all x” for
“∀x”, nothing for the colon (it becomes a
comma), and then translate P(x). Again we may
emphasize the type -- “for all x of type T, P(x) is
true”. In the example, “for all dogs x, x is a
poodle”.

• If there are multiple quantifiers the rules for
translating the colon change a bit. We translate
“∃x: ∃y: P(x) ∧ P(y)” as “there exist a dog x and
a dog y such that both are poodles”.

Types and the Universe of Discourse

• The type of the bound variable is an
important part of the meaning of a quantified
statement.

• Every variable is typed, and “there exist” and
“for all” refer to the type, whether or not we
state this in our translation.

• Traditionally logicians have referred to the
type as the universe of discourse for the
variable.

Types and Universal Quantifiers

• This is particularly important for universal
quantifiers.

• The statements “all deer have antlers” and “all
animals have antlers” have different meanings
but might both be written ∀x: A(x) -- the
difference would be the type of the variable
x. In the first the type of x is “deer”, in the
second it is “animals”.

Quantifiers and Empty Types
• We can quantify over types that contain no

elements -- let’s take the set U of unicorns as
our example.

• Any statement of the form ∃x: P(x) is false if the
type of x is U, as it says “there exists a unicorn
such that” something. But any statement of the
form ∀x: P(x) is true.

• It is true that all unicorns are green, and also
true that all unicorns are not green. (For that
matter, it is true that all unicorns are both green
and not green -- ∀x: G(x) ∧ ¬G(x) in symbols.)

Some Rules for Quantifiers

• Whenever our original predicate has more
than one free variable, we need more than
one quantifier to bind them and form a
proposition. Let D be a set of dogs and C be
a set of colors, and let H(d, c) mean “dog d
has color c”.

• If I say ∃d: ∃c: H(d, c), this means “there exists
a dog d and a color c such that d has c”.
Note that the first colon translates as “and”
rather than as “such that”.

Quantifiers of the Same Kind

• If instead of ∃d: ∃c: H(d, c), we said ∃c: ∃d:
H(d, c), this would mean exactly the same
thing. Similarly ∀d: ∀c: H(d, c) and ∀c: ∀d:
H(d, c) both mean “every dog has every
color”.

• We can switch similar adjacent quantifiers, but
we will soon see that switching dissimilar
quantifiers changes the meaning.

Quantifer DeMorgan Rules

• We have two “Quantifier DeMorgan” rules to
relate quantifiers to negation. We can simplify
¬∃x: P(x) as ∀x: ¬P(x), and ¬∀x: P(x) as ∃x:
¬P(x).

• A universal statement is true if and only if
there is not a counterexample to it.

• This rule explains the convention about
empty types: “All unicorns are green” is
equivalent to “there does not exist a non-
green unicorn” which is clearly true.

Clicker Question #1

• Consider the statement “It is not the case that
all dogs like to eat bananas.” Which of the
following statements is equivalent to it?

• (a) There exists a dog that does not like bananas.

• (b) All dogs who like bananas do not exist.

• (c) It is not the case that there exists a dog that
likes bananas.

• (d) There exists a dog that likes bananas.

Answer #1

• Consider the statement “It is not the case that
all dogs like to eat bananas.” Which of the
following statements is equivalent to it?

• (a) There exists a dog that does not like bananas.

• (b) All dogs who like bananas do not exist.

• (c) It is not the case that there exists a dog that
likes bananas.

• (d) There exists a dog that likes bananas.

Multiple Quantifiers

• Let’s look more closely at the effect of
multiple dissimilar quantifiers. Let x and y be
of type natural and consider x ≤ y, which
has two free variables.

• If we say ∃x: x ≤ y, this statement still has y as
a free variable, so its meaning depends on y.
It says that there is a natural less than or
equal than y, and this statement is true for
any y. (For example, x could be y itself).

Multiple Quantifiers

• Similarly ∃y: x ≤ y has one free variable, x,
and is true for any x.

• We can also form ∀x: x ≤ y, which is never
true for any y, and finally ∀y: x ≤ y which is
true if x = 0 but false for any other x.

• Now we can make propositions from any of
these four statements by quantifying the
remaining free variable.

Making Propositions

• The statements ∃x: ∃y: x ≤ y and ∀x: ∀y: x ≤
y are true and false respectively, and can have
their quantifier order switched.

• More interesting are ∀y: ∃x: x ≤ y (true), ∀x:
∃y: x ≤ y (true), ∃y: ∀x: x ≤ y (false), and ∃x:
∀y: x ≤ y (true, as x could be 0).

• The last two examples show that switching
dissimilar quantifiers can change the meaning.

Clicker Question #2

• Let’s now change our data type from natural
numbers to the set of integers from 1
through 7. Which of the following four
quantified statements is true?

• (a) ¬∀x: ∀y: x ≤ y

• (b) ¬∃x: ∃y: x ≤ y

• (c) ¬∃x: ∀y: x ≤ y

• (d) ¬∀x: ∃y: x ≤ y

Answer #2

• Let’s now change our data type from natural
numbers to the set of integers from 1
through 7. Which of the following four
quantified statements is true?

• (a) ¬∀x: ∀y: x ≤ y

• (b) ¬∃x: ∃y: x ≤ y

• (c) ¬∃x: ∀y: x ≤ y

• (d) ¬∀x: ∃y: x ≤ y

Languages, Language Operations

• Recall that for any finite alphabet Σ we have
defined the set Σ* of all strings made up of a
finite sequence of letters from Σ, and defined
a language over Σ to be any subset of Σ*,
that is, any set of strings. Here we’ll have Σ =
{a, b}.

• Because languages are sets, we can use any of
our set operators on them.

Set Operators on Languages

• If X is all strings beginning with a, and Y is all
strings ending in b, then X ∪ Y is the set of all
strings that begin with a or end in b, and X ∩
Y is the set of all strings that both begin with
a and end in b.

• Similarly, we can define X ∆ Y, X ∖ Y, and the
complements of X and Y respectively. For
example, the complement of X is the set of
all strings that don’t begin with a (including
the empty string λ).

More Language Operations

• Now that we have quantifiers, we will be able
to define two more operations on languages,
called concatenation and Kleene star.

• In the last third of the course, we’ll use these
two operations, along with the union
operation, to define regular expressions
and thus define the class of regular
languages.

Language Concatenation

• We’ll now define the concatenation
product (or just concatenation) of two
languages.

• Remember that the concatenation of two
strings is what we get by writing the second
string after the first.

• In general, XY is the language {w: ∃u: ∃v: (w =
uv) ∧ (u ∈ X) ∧ (v ∈ Y)}. A string w is in XY if
it is possible to split it as a string in X
followed by a string in Y.

Concatenation Example

• Again let X = {w: w begins with a} and Y =
{w: w ends in b}.

• The product XY is the set of all strings that
we can make by writing a string in X followed
by a string from Y.

• In this example, XY is the same language as X
∩ Y. Any string in XY must both begin with a
and end with b, and any string with these two
properties can be split into a string in X and a
string in Y.

Properties of Concatenation

• Unlike most “multiplication” operations,
concatenation is not commutative. The
language YX is {w: ∃u: ∃v: (w = uv) ∧ (u ∈ Y) ∧
(v ∈ X)}. Strings in YX need not begin with a
or end in b -- in fact a string is in YX if and
only if it has a b that is immediately followed
by an a.

• If we let “a” and “b” denote the languages {a}
and {b}, with one string each, what is the
language aΣ*b? Or Σ*baΣ*?

Clicker Question #3

• Which of the following strings is not in the
language Σ*bbaΣ*?

• (a) abbaab

• (b) bbaaa

• (c) ababba

• (d) bababaa

Answer #3

• Which of the following strings is not in the
language Σ*bbaΣ*?

• (a) abbaab

• (b) bbaaa

• (c) ababba

• (d) bababaa

Powers of Languages

• In algebra we say “xk” to denote the product of k
copies of x. Similarly in language theory, if X is a
language, we abbreviate the concatenation product
XX as “X2”, XXX as “X3”, and so forth.

• It turns out that if we treat concatenation as
“multiplication” and union as “addition”, the
distributive law holds, and we can use algebraic
rules to get facts like (X + Y)2 = X2 + XY + Y2. (We
don’t say “2XY” because “XY + XY” just equals XY
-- the union of a language with itself is just itself.)

The Kleene Star Operation

• X0 is a special case -- “not multiplying” gives us
the multiplicative identity, which turns out to be
the language {λ}. (Check that {λ}X = X for any
language X.)

• It’s convenient sometimes to talk about the
language X0 + X1 + X2 + X3 + ..., which is the set
of all strings that can be made by concatenating
together any number of strings from X. We call
this language X*, the Kleene star of X. We’ve
used this notation already when we defined Σ*
to be the set of all strings from Σ.

