CMPSCI 250: Introduction to Computation

Lecture 7: Quantifiers and Languages
David Mix Barrington
7 February 2014

Quantifiers and Languages

- Quantifier Definitions
- Translating Quantifiers
- Types and the Universe of Discourse
- Some Quantifier Rules
- Multiple Quantifiers
- Languages and Language Operations
- Language Concatenation and Kleene Star

The Existential Quantifier

- Suppose that $P(x)$ is a predicate, where x is a variable of type T. For example, T might be a set of dogs and $P(x)$ might mean "dog x is a poodle".
- The quantified statement $\exists \mathrm{x}: \mathrm{P}(\mathrm{x})$ means "there exists a dog x such that x is a poodle", or "there is at least one poodle in T ". The symbol " \exists " is called the existential quantifier.

Universal Quantifiers and Binding

- The quantified statement $\forall x: P(x)$ means "for all dogs x, x is a poodle" or "every dog in T is a poodle". The symbol \forall is the universal quantifier.
- Each quantifier binds a free variable, making it a bound variable. Both the statements $\exists x: P(x)$ and $\forall x: P(x)$ are propositions, as they have no free variables -- they are either true or false once T and P are defined.

Translating Quantifiers

- We translate quantified statements into English very carefully and mechanically -- after making a first translation we can adapt to something that sounds more natural.
- In translating " $\exists x: P(x)$ ", we say "there exists an x " for " $\exists x$ ","such that" for the colon, and then translate $P(x)$. If we want to emphasize the type of x, we might say "there exists an x of type T such that $P(x)$ is true". In our example, this was "there exists a $\operatorname{dog} x$ such that x is a poodle".

Translating Quantifiers

- In translating " $\forall x: P(x)$ ", we say "for all x " for " $\forall x$ ", nothing for the colon (it becomes a comma), and then translate $P(x)$. Again we may emphasize the type -- "for all x of type T, $P(x)$ is true". In the example, "for all dogs x, x is a poodle".
- If there are multiple quantifiers the rules for translating the colon change a bit. We translate " $\exists x: \exists y: P(x) \wedge P(y)$ " as "there exist a dog x and a dog y such that both are poodles".

Types and the Universe of Discourse

- The type of the bound variable is an important part of the meaning of a quantified statement.
- Every variable is typed, and "there exist" and "for all" refer to the type, whether or not we state this in our translation.
- Traditionally logicians have referred to the type as the universe of discourse for the variable.

Types and Universal Quantifiers

- This is particularly important for universal quantifiers.
- The statements "all deer have antlers" and "all animals have antlers" have different meanings but might both be written $\forall x: A(x)$-- the difference would be the type of the variable x. In the first the type of x is "deer", in the second it is "animals".

Quantifiers and Empty Types

- We can quantify over types that contain no elements -- let's take the set U of unicorns as our example.
- Any statement of the form $\exists x: P(x)$ is false if the type of x is U, as it says "there exists a unicorn such that" something. But any statement of the form $\forall x: P(x)$ is true.
- It is true that all unicorns are green, and also true that all unicorns are not green. (For that matter, it is true that all unicorns are both green and not green $--\forall x: G(x) \wedge \neg G(x)$ in symbols.)

Some Rules for Quantifiers

- Whenever our original predicate has more than one free variable, we need more than one quantifier to bind them and form a proposition. Let D be a set of dogs and C be a set of colors, and let H(d, c) mean "dog d has color c".
- If I say $\exists \mathrm{d}: \exists \mathrm{c}: \mathrm{H}(\mathrm{d}, \mathrm{c})$, this means "there exists a dog d and a color c such that d has c ". Note that the first colon translates as "and" rather than as "such that".

Quantifiers of the Same Kind

- If instead of $\exists \mathrm{d}: \exists \mathrm{c}: \mathrm{H}(\mathrm{d}, \mathrm{c})$, we said $\exists \mathrm{c}$: $\exists \mathrm{d}$: $H(d, c)$, this would mean exactly the same thing. Similarly $\forall \mathrm{d}: \forall \mathrm{c}: \mathrm{H}(\mathrm{d}, \mathrm{c})$ and $\forall \mathrm{c}: ~ \forall \mathrm{~d}$: $H(d, c)$ both mean "every dog has every color".
- We can switch similar adjacent quantifiers, but we will soon see that switching dissimilar quantifiers changes the meaning.

Quantifer DeMorgan Rules

- We have two "Quantifier DeMorgan" rules to relate quantifiers to negation. We can simplify $\neg \exists \mathrm{x}: \mathrm{P}(\mathrm{x})$ as $\forall \mathrm{x}: \neg \mathrm{P}(\mathrm{x})$, and $\neg \forall \mathrm{x}: \mathrm{P}(\mathrm{x})$ as $\exists \mathrm{x}$: $\neg P(x)$.
- A universal statement is true if and only if there is not a counterexample to it.
- This rule explains the convention about empty types:"All unicorns are green" is equivalent to "there does not exist a nongreen unicorn" which is clearly true.

Clicker Question \#|

- Consider the statement "It is not the case that all dogs like to eat bananas." Which of the following statements is equivalent to it?
- (a) There exists a dog that does not like bananas.
- (b) All dogs who like bananas do not exist.
- (c) It is not the case that there exists a dog that likes bananas.
- (d) There exists a dog that likes bananas.

Answer \#I

- Consider the statement "It is not the case that all dogs like to eat bananas." Which of the following statements is equivalent to it?
- (a) There exists a dog that does not like bananas.
- (b) All dogs who like bananas do not exist.
- (c) It is not the case that there exists a dog that likes bananas.
- (d) There exists a dog that likes bananas.

Multiple Quantifiers

- Let's look more closely at the effect of multiple dissimilar quantifiers. Let x and y be of type natural and consider $x \leq y$, which has two free variables.
- If we say $\exists x: x \leq y$, this statement still has y as a free variable, so its meaning depends on y. It says that there is a natural less than or equal than y, and this statement is true for any y. (For example, x could be y itself).

Multiple Quantifiers

- Similarly $\exists y: x \leq y$ has one free variable, x, and is true for any x.
- We can also form $\forall x: x \leq y$, which is never true for any y, and finally $\forall y$: $x \leq y$ which is true if $x=0$ but false for any other x.
- Now we can make propositions from any of these four statements by quantifying the remaining free variable.

Making Propositions

- The statements $\exists \mathrm{x}: \exists \mathrm{y}: \mathrm{x} \leq \mathrm{y}$ and $\forall \mathrm{x}: \forall \mathrm{y}: \mathrm{x} \leq$ y are true and false respectively, and can have their quantifier order switched.
- More interesting are $\forall y: \exists x: x \leq y$ (true), $\forall x$: $\exists y: x \leq y$ (true), $\exists y: \forall x: x \leq y$ (false), and $\exists x$: $\forall y: x \leq y$ (true, as x could be 0).
- The last two examples show that switching dissimilar quantifiers can change the meaning.

Clicker Question \#2

- Let's now change our data type from natural numbers to the set of integers from I through 7. Which of the following four quantified statements is true?
- (a) $\neg \forall x: \forall y: x \leq y$
- (b) $\neg \exists x: \exists y: x \leq y$
- (c) $\neg \exists x: \forall y: x \leq y$
- (d) $\neg \forall x: \exists y: x \leq y$

Answer \#2

- Let's now change our data type from natural numbers to the set of integers from I through 7. Which of the following four quantified statements is true?
- (a) $\neg \forall x: \forall y: x \leq y$
- (b) $ᄀ \exists x: \exists y: x \leq y$
- (c) $\neg \exists x: \forall y: x \leq y$
- (d) $\neg \forall x: \exists y: x \leq y$

Languages, Language Operations

- Recall that for any finite alphabet Σ we have defined the set Σ^{*} of all strings made up of a finite sequence of letters from Σ, and defined a language over Σ to be any subset of Σ^{*}, that is, any set of strings. Here we'll have $\Sigma=$ $\{a, b\}$.
- Because languages are sets, we can use any of our set operators on them.

Set Operators on Languages

- If X is all strings beginning with a, and Y is all strings ending in b, then $\mathrm{X} \cup \mathrm{Y}$ is the set of all strings that begin with a or end in b, and $X \cap$ Y is the set of all strings that both begin with a and end in b.
- Similarly, we can define $X \Delta Y, X \backslash Y$, and the complements of X and Y respectively. For example, the complement of X is the set of all strings that don't begin with a (including the empty string λ).

More Language Operations

- Now that we have quantifiers, we will be able to define two more operations on languages, called concatenation and Kleene star.
- In the last third of the course, we'll use these two operations, along with the union operation, to define regular expressions and thus define the class of regular languages.

Language Concatenation

- We'll now define the concatenation product (or just concatenation) of two languages.
- Remember that the concatenation of two strings is what we get by writing the second string after the first.
- In general, $X Y$ is the language $\{w: \exists u: \exists v:(w=$ $u v) \wedge(u \in X) \wedge(v \in Y)\}$. A string w is in $X Y$ if it is possible to split it as a string in X followed by a string in Y.

Concatenation Example

- Again let $X=\{w: w$ begins with $a\}$ and $Y=$ $\{w: w$ ends in $b\}$.
- The product $X Y$ is the set of all strings that we can make by writing a string in X followed by a string from Y .
- In this example, $X Y$ is the same language as X $n \mathrm{Y}$. Any string in XY must both begin with a and end with b, and any string with these two properties can be split into a string in X and a string in Y .

Properties of Concatenation

- Unlike most "multiplication" operations, concatenation is not commutative. The language YX is $\{\mathrm{w}: \exists \mathrm{u}: \exists \mathrm{v}:(\mathrm{w}=\mathrm{uv}) \wedge(\mathrm{u} \in \mathrm{Y}) \wedge$ $(v \in X)\}$. Strings in $Y X$ need not begin with a or end in b-- in fact a string is in $Y X$ if and only if it has $a b$ that is immediately followed by an a.
- If we let " a " and " b " denote the languages $\{a\}$ and $\{b\}$, with one string each, what is the language $\mathrm{a} \Sigma^{*} \mathrm{~b}$? $\operatorname{Or} \Sigma^{*} \mathrm{ba} \Sigma^{*}$?

Clicker Question \#3

- Which of the following strings is not in the language $\Sigma^{*} b b a \Sigma^{*}$?
- (a) abbaab
- (b) bbaaa
- (c) ababba
- (d) bababaa

Answer \#3

- Which of the following strings is not in the language $\sum^{*} b b a \Sigma^{*}$?
- (a) abbaab
- (b) bbaaa
- (c) ababba
- (d) bababaa

Powers of Languages

- In algebra we say " x^{k} " to denote the product of k copies of x. Similarly in language theory, if X is a language, we abbreviate the concatenation product $X X$ as " X^{2} ", $X X X$ as " $X^{3 "}$, and so forth.
- It turns out that if we treat concatenation as "multiplication" and union as "addition", the distributive law holds, and we can use algebraic rules to get facts like $(X+Y)^{2}=X^{2}+X Y+Y^{2}$. (We don't say " $2 X Y$ " because " $X Y+X Y$ " just equals $X Y$ -- the union of a language with itself is just itself.)

The Kleene Star Operation

- X^{0} is a special case -- "not multiplying" gives us the multiplicative identity, which turns out to be the language $\{\lambda\}$. (Check that $\{\lambda\} X=X$ for any language X .)
- It's convenient sometimes to talk about the language $X^{0}+X^{1}+X^{2}+X^{3}+\ldots$, which is the set of all strings that can be made by concatenating together any number of strings from X. We call this language X^{*}, the Kleene star of X. We've used this notation already when we defined Σ^{*} to be the set of all strings from Σ.

