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The Existential Quantifier

• Suppose that P(x) is a predicate, where x is a 
variable of type T.  For example, T might be a 
set of dogs and P(x) might mean “dog x is a 
poodle”.

• The quantified statement ∃x: P(x) 
means “there exists a dog x such that x is a 
poodle”, or “there is at least one poodle in 
T”. The symbol “∃” is called the existential 
quantifier.



Universal Quantifiers and Binding

• The quantified statement ∀x: P(x) means “for 
all dogs x, x is a poodle” or “every dog in T is 
a poodle”.  The symbol ∀ is the universal 
quantifier.

• Each quantifier binds a free variable, making 
it a bound variable.  Both the statements 
∃x: P(x) and ∀x: P(x) are propositions, as they 
have no free variables -- they are either true 
or false once T and P are defined.



Translating Quantifiers

• We translate quantified statements into 
English very carefully and mechanically -- after 
making a first translation we can adapt to 
something that sounds more natural.

• In translating “∃x: P(x)”, we say “there exists 
an x” for “∃x”, “such that” for the colon, and 
then translate P(x).  If we want to emphasize 
the type of x, we might say “there exists an x 
of type T such that P(x) is true”.  In our 
example, this was “there exists a dog x such 
that x is a poodle”.



Translating Quantifiers

• In translating “∀x: P(x)”, we say “for all x” for 
“∀x”, nothing for the colon (it becomes a 
comma), and then translate P(x).  Again we may 
emphasize the type -- “for all x of type T, P(x) is 
true”.  In the example, “for all dogs x, x is a 
poodle”.

• If there are multiple quantifiers the rules for 
translating the colon change a bit.  We translate 
“∃x: ∃y: P(x) ∧ P(y)” as “there exist a dog x and 
a dog y such that both are poodles”.



Types and the Universe of Discourse

• The type of the bound variable is an 
important part of the meaning of a quantified 
statement.  

• Every variable is typed, and “there exist” and 
“for all” refer to the type, whether or not we 
state this in our translation.  

• Traditionally logicians have referred to the 
type as the universe of discourse for the 
variable.



Types and Universal Quantifiers

• This is particularly important for universal 
quantifiers.  

• The statements “all deer have antlers” and “all 
animals have antlers” have different meanings 
but might both be written ∀x: A(x) -- the 
difference would be the type of the variable 
x.  In the first the type of x is “deer”, in the 
second it is “animals”.



Quantifiers and Empty Types
• We can quantify over types that contain no 

elements -- let’s take the set U of unicorns as 
our example.  

• Any statement of the form ∃x: P(x) is false if the 
type of x is U, as it says “there exists a unicorn 
such that” something.  But any statement of the 
form ∀x: P(x) is true.  

• It is true that all unicorns are green, and also 
true that all unicorns are not green.  (For that 
matter, it is true that all unicorns are both green 
and not green -- ∀x: G(x) ∧ ¬G(x) in symbols.)



Some Rules for Quantifiers

• Whenever our original predicate has more 
than one free variable, we need more than 
one quantifier to bind them and form a 
proposition.  Let D be a set of dogs and C be 
a set of colors, and let H(d, c) mean “dog d 
has color c”.

• If I say ∃d: ∃c: H(d, c), this means “there exists 
a dog d and a color c such that d has c”.  
Note that the first colon translates as “and” 
rather than as “such that”. 



Quantifiers of the Same Kind

• If instead of ∃d: ∃c: H(d, c), we said ∃c: ∃d: 
H(d, c), this would mean exactly the same 
thing.  Similarly ∀d: ∀c: H(d, c) and ∀c: ∀d: 
H(d, c) both mean “every dog has every 
color”.  

• We can switch similar adjacent quantifiers, but 
we will soon see that switching dissimilar 
quantifiers changes the meaning.



Quantifer DeMorgan Rules

• We have two “Quantifier DeMorgan” rules to 
relate quantifiers to negation.  We can simplify 
¬∃x: P(x) as ∀x: ¬P(x), and ¬∀x: P(x) as ∃x: 
¬P(x).  

• A universal statement is true if and only if 
there is not a counterexample to it.  

• This rule explains the convention about 
empty types: “All unicorns are green” is 
equivalent to “there does not exist a non-
green unicorn” which is clearly true.



Clicker Question #1

• Consider the statement “It is not the case that 
all dogs like to eat bananas.”  Which of the 
following statements is equivalent to it?

• (a) There exists a dog that does not like bananas.

• (b) All dogs who like bananas do not exist.

• (c) It is not the case that there exists a dog that 
likes bananas.

• (d) There exists a dog that likes bananas.



Answer #1

• Consider the statement “It is not the case that 
all dogs like to eat bananas.”  Which of the 
following statements is equivalent to it?

• (a) There exists a dog that does not like bananas.

• (b) All dogs who like bananas do not exist.

• (c) It is not the case that there exists a dog that 
likes bananas.

• (d) There exists a dog that likes bananas.



Multiple Quantifiers

• Let’s look more closely at the effect of 
multiple dissimilar quantifiers.  Let x and y be 
of type natural and consider x ≤ y, which 
has two free variables.

• If we say ∃x: x ≤ y, this statement still has y as 
a free variable, so its meaning depends on y.  
It says that there is a natural less than or 
equal than y, and this statement is true for 
any y. (For example, x could be y itself).  



Multiple Quantifiers

• Similarly ∃y: x ≤ y has one free variable, x, 
and is true for any x. 

• We can also form ∀x: x ≤ y, which is never 
true for any y, and finally ∀y: x ≤ y which is 
true if x = 0 but false for any other x.

• Now we can make propositions from any of 
these four statements by quantifying the 
remaining free variable.



Making Propositions

• The statements ∃x: ∃y: x ≤ y and ∀x: ∀y: x ≤ 
y are true and false respectively, and can have 
their quantifier order switched.  

• More interesting are ∀y: ∃x: x ≤ y (true), ∀x: 
∃y: x ≤ y (true), ∃y: ∀x: x ≤ y (false), and ∃x: 
∀y: x ≤ y (true, as x could be 0).  

• The last two examples show that switching 
dissimilar quantifiers can change the meaning.



Clicker Question #2

• Let’s now change our data type from natural 
numbers to the set of integers from 1 
through 7.  Which of the following four 
quantified statements is true?

• (a) ¬∀x: ∀y: x ≤ y

• (b) ¬∃x: ∃y: x ≤ y

• (c) ¬∃x: ∀y: x ≤ y

• (d) ¬∀x: ∃y: x ≤ y



Answer #2

• Let’s now change our data type from natural 
numbers to the set of integers from 1 
through 7.  Which of the following four 
quantified statements is true?

• (a) ¬∀x: ∀y: x ≤ y

• (b) ¬∃x: ∃y: x ≤ y

• (c) ¬∃x: ∀y: x ≤ y

• (d) ¬∀x: ∃y: x ≤ y



Languages, Language Operations

• Recall that for any finite alphabet Σ we have 
defined the set Σ* of all strings made up of a 
finite sequence of letters from Σ, and defined 
a language over Σ to be any subset of Σ*, 
that is, any set of strings.  Here we’ll have Σ = 
{a, b}.

• Because languages are sets, we can use any of 
our set operators on them. 



Set Operators on Languages

• If X is all strings beginning with a, and Y is all 
strings ending in b, then X ∪ Y is the set of all 
strings that begin with a or end in b, and X ∩ 
Y is the set of all strings that both begin with 
a and end in b.  

• Similarly, we can define X ∆ Y, X ∖ Y, and the 
complements of X and Y respectively.  For 
example, the complement of X is the set of 
all strings that don’t begin with a (including 
the empty string λ).



More Language Operations

• Now that we have quantifiers, we will be able 
to define two more operations on languages, 
called concatenation and Kleene star.

• In the last third of the course, we’ll use these 
two operations, along with the union 
operation, to define regular expressions 
and thus define the class of regular 
languages.



Language Concatenation

•  We’ll now define the concatenation 
product (or just concatenation) of two 
languages.  

• Remember that the concatenation of two 
strings is what we get by writing the second 
string after the first.

• In general, XY is the language {w: ∃u: ∃v: (w = 
uv) ∧ (u ∈ X) ∧ (v ∈ Y)}.  A string w is in XY if 
it is possible to split it as a string in X 
followed by a string in Y.  



Concatenation Example

• Again let X = {w: w begins with a} and Y = 
{w: w ends in b}.

• The product XY is the set of all strings that 
we can make by writing a string in X followed 
by a string from Y.

• In this example, XY is the same language as X 
∩ Y.  Any string in XY must both begin with a 
and end with b, and any string with these two 
properties can be split into a string in X and a 
string in Y.



Properties of Concatenation

• Unlike most “multiplication” operations, 
concatenation is not commutative.   The 
language YX is {w: ∃u: ∃v: (w = uv) ∧ (u ∈ Y) ∧ 
(v ∈ X)}.  Strings in YX need not begin with a 
or end in b -- in fact a string is in YX if and 
only if it has a b that is immediately followed 
by an a.

• If we let “a” and “b” denote the languages {a} 
and {b}, with one string each, what is the 
language aΣ*b?  Or Σ*baΣ*?



Clicker Question #3

• Which of the following strings is not in the 
language Σ*bbaΣ*?

• (a) abbaab

• (b) bbaaa

• (c) ababba

• (d) bababaa



Answer #3

• Which of the following strings is not in the 
language Σ*bbaΣ*?

• (a) abbaab

• (b) bbaaa

• (c) ababba

• (d) bababaa



Powers of Languages

• In algebra we say “xk” to denote the product of k 
copies of x.  Similarly in language theory, if X is a 
language, we abbreviate the concatenation product 
XX as “X2”, XXX as “X3”, and so forth.  

• It turns out that if we treat concatenation as 
“multiplication” and union as “addition”, the 
distributive law holds, and we can use algebraic 
rules to get facts like (X + Y)2 = X2 + XY + Y2. (We 
don’t say “2XY” because “XY + XY” just equals XY 
-- the union of a language with itself is just itself.)



The Kleene Star Operation

• X0 is a special case -- “not multiplying” gives us 
the multiplicative identity, which turns out to be 
the language {λ}.  (Check that {λ}X = X for any 
language X.)

• It’s convenient sometimes to talk about the 
language X0 + X1 + X2 + X3 + ..., which is the set 
of all strings that can be made by concatenating 
together any number of strings from X.  We call 
this language X*, the Kleene star of X.  We’ve 
used this notation already when we defined Σ* 
to be the set of all strings from Σ. 


