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Strategies for PropCalc Proofs

• The Forward-Backward Method

• Transforming the Proof Goal

• Contrapositives and Indirect Proof

• Proof By Contradiction

• Hypothetical Syllogism: Two Proofs in Series

• Proof By Cases: Two Proofs in Parallel

• An Example: Exercises 1.8.3 and 1.8.4



Some Implication Rules

• The two Joining Rules give us x ∨ y and y 
∨ x from x.

• The two Separation Rules give us either 
x or y from x ∧ y.

• We can derive x → y from either ¬x 
(Vacuous Proof) or y (Trivial Proof).

• From ¬x → 0 we can derive x by 
Contradiction.



More Implication Rules

• From x → y and y → z we can derive x → z 
by Hypothetical Syllogism.

• From (x ∧ y) → z and (x ∧ ¬y) → z we can 
derive x → z by Proof By Cases.

• Of course all these rules may be verified by 
truth tables.



The Setting for PropCalc Proofs

• In an equational sequence or a deductive 
sequence proof, we begin with one 
compound proposition, our premise, and we 
want to get to another, our conclusion, by 
applying rules. 

• We are in effect searching through a path in a 
particular space, where the points are 
compound propositions and the moves are 
those authorized by the rules.



The Forward-Backward Method

• The forward-backward method (first 
named, AFAIK, by Daniel Solow in his How to 
Read and Do Proofs) is a way of organizing this 
search. 

• Given a search from P to C, we can look for a 
forward move, which is some compound 
proposition P’ where we can move from P to 
P’.  

• This reduces our search problem to finding a 
way from P’ to C. 



The Forward-Backward Method

• A backward move is some C’ such that 
we can move from C’ to C.  This reduces our 
search to getting from P to C’.

• If a forward or backward move is well 
chosen, it gets us to an easier search.  If it is 
not, it gets us to a harder search.  How to 
tell?  In general there is no firm guideline, but 
we’d like to make the ends of the new search 
more similar to one another.



Transforming the Proof Goal

• Some of the rules we listed last time help us 
transform a proof goal in other ways.  Again 
suppose we are trying to get from P to C.  
Suppose we are able to prove C without using 
the assumption P at all.  

• In this case P → C is true -- the tautology C 
→ (P → C) is called the rule of trivial 
proof.  This does actually happen -- our 
breakdowns of proofs sometimes leaves very 
easy pieces.



More Transformations
• Similarly we may be able to prove ¬P, and since 

¬P → (P → C) is a tautology, called the rule of 
vacuous proof, this is good enough to prove P 
→ C.  For example, we can prove “If this animal 
is a unicorn, it is green” in this way.

• An equivalence P ↔ C is often proved by two 

deductive sequence proofs rather than a single 
equational sequence proof.  The equivalence 
and implication rule says that (P ↔ C) ↔ 

((P → C) ∧ (C → P)).  This allows us to prove an 
“if and only if” by “proving both directions”.



Indirect Proof

• Assuming P and using it to prove C is called a 
direct proof of P → C.  Sometimes we 
may find it easier to work with the terms of 
C than those of P.  If we assume ¬C and use it 
to prove ¬P, we have made a direct proof of 
the implication ¬C → ¬P.  

• But this implication, called the 
contrapositive of the original P → C, is 
equivalent to the original.  So proving ¬P 
from ¬C is sufficient to prove P → C, and 
this is called an indirect proof.



Clicker Question #1
• How would you carry out an indirect proof of the 

implication “If you don’t eat your meat, you can’t 
have any pudding”?

• (a) Assume you don’t eat your meat, prove you can’t 
have pudding.

• (b) Assume you eat meat, prove you can have 
pudding.

• (c) Assume you have pudding, prove you eat meat.

• (d) Assume you can’t have pudding, prove you don’t 
eat meat.



Answer #1
• How would you carry out an indirect proof of the 

implication “If you don’t eat your meat, you can’t 
have any pudding”?

• (a) Assume you don’t eat your meat, prove you can’t 
have pudding.

• (b) Assume you eat meat, prove you can have 
pudding.

• (c) Assume you have pudding, prove you eat meat.

• (d) Assume you can’t have pudding, prove you don’t 
eat meat.



Bad Indirect Proofs

• Be careful to use the contrapositive rather than 
other, related implications that are not 
equivalent to P → C.  

• Simply reversing the arrow gets you C → P, the 
converse of P → C, which may well be true 
when P → C is false, or vice versa. 

•  Simply taking the negation of both sides gives 
you ¬P → ¬C, the inverse  of P → C, which is 
not equivalent to P → C either.  (In fact the 
converse is the contrapositive of the inverse and 
vice versa, so they are equivalent to each other.)



Proof By Contradiction

• In Discussion #1 we saw an example of 
proof by contradiction, when we 
assumed that some natural number was 
neither even nor odd.  

• We wound up using this assumption to prove 
that there was a “neither number” that was 
smaller than the smallest “neither number”, 
which is impossible.



Proof By Contradiction

• The negation of the implication P → C is P ∧ 
¬C, because the only way the implication can 
be false is if the premise is true and the 
conclusion false.  

• If we can assume P ∧ ¬C and prove 0, the 
always false proposition, we have made a 
direct proof of the implication (P ∧ ¬C) → 0, 
and one of our rules says that (P → C) ↔ ((P 

∧ ¬C) → 0) is a tautology.



Proof By Contradiction

• The reason we might want to do this is that 
the more assumptions we have, the more 
possible steps we have available.  Trying proof 
by contradiction is often a good way to get 
started.  

• But it’s important to keep track of what the 
assumption was, so we know exactly what we 
are proving to be false.  And of course any 
error in a proof can cause a contradiction.



Clicker Question #2
• Consider the following argument:  “If there is 

any natural that is neither even nor odd, then 
there is a least such number x.  Because 0 is 
even, x ≠ 0.  So x has a predecessor y that is 
either even or odd.  But if y is odd then x is 
even, and if y is even then x is odd.”  What do 
we conclude from this argument?

• (a) No natural is neither even nor odd

• (b) y cannot be either even or odd

• (c) x must be both even and odd

• (d) Every number is both even and odd



Answer #2
• Consider the following argument:  “If there is 

any natural that is neither even nor odd, then 
there is a least such number x.  Because 0 is 
even, x ≠ 0.  So x has a predecessor y that is 
either even or odd.  But if y is odd then x is 
even, and if y is even then x is odd.”  What do 
we conclude from this argument?

• (a) No natural is neither even nor odd

• (b) y cannot be either even or odd

• (c) x must be both even and odd

• (d) Every number is both even and odd



Hypothetical Syllogism

• Our use of an arrow for implication certainly 
suggests that implication is transitive.  This 
means that if we can get from P to Q and we 
can get from Q to C, then we can get from P 
to C. 

•  And in fact ((P → Q) ∧ (Q → C)) → (P → 
C) is a tautology, called the rule of 
Hypothetical Syllogism.



Hypothetical Syllogism
• This means that we can pick an intermediate 

goal for our proof -- if we pick a useful Q, it 
may be easier to figure out how to get from 
P to Q and how to get from Q to C than to 
figure out how to get from P to C all at once.

• But a bad choice of intermediate goal could 
make things worse -- the two subgoals might 
be harder to find or even impossible.  The 
rule of hypothetical syllogism is an 
implication, not an equivalence.  It is possible 
for P → C to be true and for one or both of 
P → Q or Q → C to be false.



Proof By Cases

• Another way to break up a proof problem 
into smaller problems is case analysis.  If R 
is any proposition at all, and P → C is true, 
then the two implications (P ∧ R) → C and (P 
∧ ¬R) → C are both true.  

• Furthermore, if we can prove both of these 
propositions, the Proof by Cases rule tells 
us that (((P ^ R) → C) ∧ ((P ∧ ¬R) → C)) → 
(P → C) is a tautology.



Proof By Cases
• The way this works in practice is that you just 

say “assume R” in the middle of your proof, and 
carry on to get C.  But now you have assumed P 
∧ R rather than just P, so you have proved only 
(P ∧ R) → C.  You need to start over and this 
time “assume ¬R”, completing a separate proof 
of (P ∧ ¬R) → C.

• You can break cases into subcases, and 
subsubcases, and so on.  Of course the ultimate 
case breakdown is into 2k subcases, one for 
each setting of the k atomic variables.  This is 
just a truth table proof!



Clicker Question #3

• I’m trying to prove P → C.  I assume Q ∧ R, 
and prove (P ∧ Q ∧ R) → C.  Then I start over 
with ¬Q ∨ ¬R, proving (P ∧ (¬Q ∨ ¬R))→ C.  
What do I still need to prove to reach my goal 
of P → C?

• (a) There is nothing left to prove, I am done.

• (b) (P ∧ ¬Q ∧ ¬R) → C

• (c) (¬Q ∧ ¬R) → C

• (d) ¬C → ¬P



Answer #3

• I’m trying to prove P → C.  I assume Q ∧ R, 
and prove (P ∧ Q ∧ R) → C.  Then I start over 
with ¬Q ∨ ¬R, proving (P ∧ (¬Q ∨ ¬R))→ C.  
What do I still need to prove to reach my goal 
of P → C?

• (a) There is nothing left to prove, I am done.

• (b) (P ∧ ¬Q ∧ ¬R) → C

• (c) (¬Q ∧ ¬R) → C

• (d) ¬C → ¬P



An Example: Exercises 1.8.3-4

• Let P be the compound proposition p ∧ q 
and let C be p ∨ q.  Of course we could 
verify (p ∧ q) → (p ∨ q) by truth tables, but 
let’s look at how to approach the problem 
using our various strategies.

• Neither trivial nor vacuous proof will work.  
Let’s try Hypothetical Syllogism.  If we pick p 
as our intermediate goal, we can get from p ∧ 
q to p by Left Separation, and from p to p ∨ q 
by Right Joining.



Example: Proof By Cases

• Let’s try Proof by Cases, with p as the 
intermediate proposition.  If we assume that p 
is true, we can prove p ∨ q by Right Joining, 
and this gives us a trivial proof of the original 
implication.  

• On the other hand, if we assume that p is 
false, then its easy to show that p ∧ q is false, 
giving us a vacuous proof of the original.



Example: Proof by Contradiction

• Using Proof by Contradiction, we assume 
both p ∧ q and ¬(p ∨ q).  The second 
assumption turns to ¬p ∧ ¬q by DeMorgan.

• Once we have “p ∧ q ∧ ¬p ∧ ¬q”, it’s pretty 
straightforward to get 0.  We use associativity 
and commutativity to get (p ∧ ¬p) ∧ q ∧ ¬q. 
We have p ∧ ¬p ↔ 0 by Excluded Middle, and 

our 0 rules say that 0 ∧ x ↔ 0 for any x.


