CMPSCI 250: Introduction to Computation

Lecture \#5: Strategies for Propositional Proofs David Mix Barrington
31 January 2014

Strategies for PropCalc Proofs

- The Forward-Backward Method
- Transforming the Proof Goal
- Contrapositives and Indirect Proof
- Proof By Contradiction
- Hypothetical Syllogism:Two Proofs in Series
- Proof By Cases:Two Proofs in Parallel
- An Example: Exercises I.8.3 and I.8.4

Some Implication Rules

- The two Joining Rules give us $x \vee y$ and y $\vee \mathrm{x}$ from x .
- The two Separation Rules give us either x or y from $x \wedge y$.
- We can derive $x \rightarrow y$ from either $\neg x$ (Vacuous Proof) or y (Trivial Proof).
- From $\neg x \rightarrow 0$ we can derive x by Contradiction.

More Implication Rules

- From $x \rightarrow y$ and $y \rightarrow z$ we can derive $x \rightarrow z$ by Hypothetical Syllogism.
- From $(x \wedge y) \rightarrow z$ and $(x \wedge \neg y) \rightarrow z$ we can derive $x \rightarrow z$ by Proof By Cases.
- Of course all these rules may be verified by truth tables.

The Setting for PropCalc Proofs

- In an equational sequence or a deductive sequence proof, we begin with one compound proposition, our premise, and we want to get to another, our conclusion, by applying rules.
- We are in effect searching through a path in a particular space, where the points are compound propositions and the moves are those authorized by the rules.

The Forward-Backward Method

- The forward-backward method (first named, AFAIK, by Daniel Solow in his How to Read and Do Proofs) is a way of organizing this search.
- Given a search from P to C, we can look for a forward move, which is some compound proposition P' where we can move from P to P'.
- This reduces our search problem to finding a way from P ' to C.

The Forward-Backward Method

- A backward move is some C' such that we can move from C' to C. This reduces our search to getting from P to C^{\prime}.
- If a forward or backward move is well chosen, it gets us to an easier search. If it is not, it gets us to a harder search. How to tell? In general there is no firm guideline, but we'd like to make the ends of the new search more similar to one another.

Transforming the Proof Goal

- Some of the rules we listed last time help us transform a proof goal in other ways. Again suppose we are trying to get from P to C. Suppose we are able to prove C without using the assumption P at all.
- In this case $P \rightarrow C$ is true -- the tautology C $\rightarrow(P \rightarrow C)$ is called the rule of trivial proof. This does actually happen -- our breakdowns of proofs sometimes leaves very easy pieces.

More Transformations

- Similarly we may be able to prove $\neg P$, and since $\neg P \rightarrow(P \rightarrow C)$ is a tautology, called the rule of vacuous proof, this is good enough to prove P
$\rightarrow C$. For example, we can prove "If this animal is a unicorn, it is green" in this way.
- An equivalence $P \leftrightarrow C$ is often proved by two deductive sequence proofs rather than a single equational sequence proof. The equivalence and implication rule says that $(P \leftrightarrow C) \leftrightarrow$ $((P \rightarrow C) \wedge(C \rightarrow P))$. This allows us to prove an "if and only if" by "proving both directions".

Indirect Proof

- Assuming P and using it to prove C is called a direct proof of $P \rightarrow C$. Sometimes we may find it easier to work with the terms of C than those of P. If we assume $\neg C$ and use it to prove $\neg \mathrm{P}$, we have made a direct proof of the implication $\neg \mathrm{C} \rightarrow \neg \mathrm{P}$.
- But this implication, called the contrapositive of the original $P \rightarrow C$, is equivalent to the original. So proving $\neg P$ from $\neg C$ is sufficient to prove $P \rightarrow C$, and this is called an indirect proof.

Clicker Question \#I

- How would you carry out an indirect proof of the implication "If you don't eat your meat, you can't have any pudding"?
- (a) Assume you don't eat your meat, prove you can't have pudding.
- (b) Assume you eat meat, prove you can have pudding.
- (c) Assume you have pudding, prove you eat meat.
- (d) Assume you can't have pudding, prove you don't eat meat.

Answer \#I

- How would you carry out an indirect proof of the implication "If you don't eat your meat, you can't have any pudding"?
- (a) Assume you don't eat your meat, prove you can't have pudding.
- (b) Assume you eat meat, prove you can have pudding.
- (c) Assume you have pudding, prove you eat meat.
- (d) Assume you can't have pudding, prove you don't eat meat.

Bad Indirect Proofs

- Be careful to use the contrapositive rather than other, related implications that are not equivalent to $\mathrm{P} \rightarrow \mathrm{C}$.
- Simply reversing the arrow gets you $C \rightarrow P$, the converse of $P \rightarrow C$, which may well be true when $P \rightarrow C$ is false, or vice versa.
- Simply taking the negation of both sides gives you $\neg P \rightarrow \neg C$, the inverse of $P \rightarrow C$, which is not equivalent to $P \rightarrow C$ either. (In fact the converse is the contrapositive of the inverse and vice versa, so they are equivalent to each other.)

Proof By Contradiction

- In Discussion \#I we saw an example of proof by contradiction, when we assumed that some natural number was neither even nor odd.
- We wound up using this assumption to prove that there was a "neither number" that was smaller than the smallest "neither number", which is impossible.

Proof By Contradiction

- The negation of the implication $P \rightarrow C$ is $P \wedge$ $\neg C$, because the only way the implication can be false is if the premise is true and the conclusion false.
- If we can assume $P \wedge \neg C$ and prove 0 , the always false proposition, we have made a direct proof of the implication $(P \wedge \neg C) \rightarrow 0$, and one of our rules says that $(P \rightarrow C) \leftrightarrow((P$ $\wedge \neg C) \rightarrow 0$) is a tautology.

Proof By Contradiction

- The reason we might want to do this is that the more assumptions we have, the more possible steps we have available. Trying proof by contradiction is often a good way to get started.
- But it's important to keep track of what the assumption was, so we know exactly what we are proving to be false. And of course any error in a proof can cause a contradiction.

Clicker Question \#2

- Consider the following argument: "If there is any natural that is neither even nor odd, then there is a least such number x. Because 0 is even, $x \neq 0$. So x has a predecessor y that is either even or odd. But if y is odd then x is even, and if y is even then x is odd." What do we conclude from this argument?
- (a) No natural is neither even nor odd
- (b) y cannot be either even or odd
- (c) x must be both even and odd
- (d) Every number is both even and odd

Answer \#2

- Consider the following argument: "If there is any natural that is neither even nor odd, then there is a least such number x. Because 0 is even, $x \neq 0$. So x has a predecessor y that is either even or odd. But if y is odd then x is even, and if y is even then x is odd." What do we conclude from this argument?
- (a) No natural is neither even nor odd
- (b) y cannot be either even or odd
- (c) x must be both even and odd
- (d) Every number is both even and odd

Hypothetical Syllogism

- Our use of an arrow for implication certainly suggests that implication is transitive. This means that if we can get from P to Q and we can get from Q to C, then we can get from P to C .
- And in fact $((\mathrm{P} \rightarrow \mathrm{Q}) \wedge(\mathrm{Q} \rightarrow \mathrm{C})) \rightarrow(\mathrm{P} \rightarrow$ C) is a tautology, called the rule of Hypothetical Syllogism.

Hypothetical Syllogism

- This means that we can pick an intermediate goal for our proof -- if we pick a useful Q, it may be easier to figure out how to get from P to Q and how to get from Q to C than to figure out how to get from P to C all at once.
- But a bad choice of intermediate goal could make things worse -- the two subgoals might be harder to find or even impossible. The rule of hypothetical syllogism is an implication, not an equivalence. It is possible for $P \rightarrow C$ to be true and for one or both of $P \rightarrow Q$ or $Q \rightarrow C$ to be false.

Proof By Cases

- Another way to break up a proof problem into smaller problems is case analysis. If R is any proposition at all, and $P \rightarrow C$ is true, then the two implications $(P \wedge R) \rightarrow C$ and $(P$ $\wedge \neg R) \rightarrow C$ are both true.
- Furthermore, if we can prove both of these propositions, the Proof by Cases rule tells us that $\left(\left(\left(P^{\wedge} R\right) \rightarrow C\right) \wedge((P \wedge \neg R) \rightarrow C)\right) \rightarrow$ $(P \rightarrow C)$ is a tautology.

Proof By Cases

- The way this works in practice is that you just say "assume R" in the middle of your proof, and carry on to get C. But now you have assumed P $\wedge R$ rather than just P, so you have proved only $(P \wedge R) \rightarrow C$. You need to start over and this time "assume $\neg R$ ", completing a separate proof of $(\mathrm{P} \wedge \neg \mathrm{R}) \rightarrow \mathrm{C}$.
- You can break cases into subcases, and subsubcases, and so on. Of course the ultimate case breakdown is into 2^{k} subcases, one for each setting of the k atomic variables. This is just a truth table proof!

Clicker Question \#3

- I'm trying to prove $P \rightarrow C$. I assume $Q \wedge R$, and prove $(P \wedge Q \wedge R) \rightarrow C$. Then I start over with $\neg \mathrm{Q} \vee \neg \mathrm{R}$, proving $(\mathrm{P} \wedge(\neg \mathrm{Q} \vee \neg \mathrm{R})) \rightarrow \mathrm{C}$. What do I still need to prove to reach my goal of $P \rightarrow C$?
- (a) There is nothing left to prove, I am done.
- (b) $(P \wedge \neg Q \wedge \neg R) \rightarrow C$
- (c) $(\neg Q \wedge \neg R) \rightarrow C$
- (d) $\neg C \rightarrow \neg P$

Answer \#3

- I'm trying to prove $P \rightarrow C$. I assume $Q \wedge R$, and prove $(P \wedge Q \wedge R) \rightarrow C$. Then I start over with $\neg Q \vee \neg R$, proving $(P \wedge(\neg Q \vee \neg R)) \rightarrow C$. What do I still need to prove to reach my goal of $P \rightarrow C$?
- (a) There is nothing left to prove, I am done.
- (b) $(P \wedge \neg Q \wedge \neg R) \rightarrow C$
- (c) $(\neg Q \wedge \neg R) \rightarrow C$
- (d) $\neg C \rightarrow \neg P$

An Example: Exercises I.8.3-4

- Let P be the compound proposition $p \wedge q$ and let C be $p \vee q$. Of course we could verify $(p \wedge q) \rightarrow(p \vee q)$ by truth tables, but let's look at how to approach the problem using our various strategies.
- Neither trivial nor vacuous proof will work. Let's try Hypothetical Syllogism. If we pick p as our intermediate goal, we can get from $p \wedge$ q to p by Left Separation, and from p to $p \vee q$ by Right Joining.

Example: Proof By Cases

- Let's try Proof by Cases, with p as the intermediate proposition. If we assume that p is true, we can prove $p \vee q$ by Right Joining, and this gives us a trivial proof of the original implication.
- On the other hand, if we assume that p is false, then its easy to show that $p \wedge q$ is false, giving us a vacuous proof of the original.

Example: Proof by Contradiction

- Using Proof by Contradiction, we assume both $p \wedge q$ and $\neg(p \vee q)$. The second assumption turns to $\neg p \wedge \neg q$ by DeMorgan.
- Once we have " $p \wedge q \wedge \neg p \wedge \neg q$ ", it's pretty straightforward to get 0 . We use associativity and commutativity to get $(p \wedge \neg p) \wedge q \wedge \neg q$. We have $p \wedge \neg p \leftrightarrow 0$ by Excluded Middle, and our 0 rules say that $0 \wedge x \leftrightarrow 0$ for any x.

