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Halting and Unsolvability

• Proving Something to be Impossible

• Representing TM’s By Strings

• The Universal Turing Machine

• The Barber of Seville Language

• Undecidable and Non-Recognizable 
Languages

• Getting More Undecidable Languages

• Turing Complete Languages



Proving Things to Be Impossible

• When a problem can be solved with a 
particular set of resources, we can prove this 
to be the case by showing how to do it.

• But what about when a problem can’t be 
solved with those resources?  We can’t just 
show algorithms that don’t work, because 
these don’t rule out the existence of other 
algorithms that do.  



Proving Things to Be Impossible

• We have one example in this course -- if a 
language cannot be decided by a DFA, the 
Myhill-Nerode Theorem can be used to prove 
it.  This also shows that the language has no 
regular expression.

• Gödel proved in 1931 that there is a true 
statement of number theory that can’t be 
proved (or a false statement that can be 
proved).  The idea is that the statement can 
be interpreted as “I am not provable”.



Clicker Question #1

• Suppose that Statement n means “there is no 
proof of Statement n in the system”.  Which 
one of these statement could be true?

• (a) Statement n is false and cannot be proved.

• (b) Statement n is true and can be proved.

• (c) Statement n is true but cannot be proved.

• (d) The system proves all true statements, and 
no false statements.



Answer #1

• Suppose that Statement n means “there is no 
proof of Statement n in the system”.  Which 
one of these statement could be true?

• (a) Statement n is false and cannot be proved.

• (b) Statement n is true and can be proved.

• (c) Statement n is true but cannot be proved.

• (d) The system proves all true statements, and 
no false statements.



Proving Limits on TM’s

• By the Church-Turing Thesis, if we prove that 
no Turing machine can decide a particular 
language, that means that no algorithm can 
decide it.

• Deciding a language means solving a general 
class of problems, not just a single instance.  

• The basic idea is called diagonalization, 
for reasons we won’t be able to go into here. 



Proving Limits on TM’s

• Like the Gödel argument, we get a 
contradiction out of applying a hypothetical 
Turing machine to itself.  The assumption that 
our target problem is decidable leads to this 
contradiction, so it is false and the problem is 
not decidable.

• To formulate this argument, we will have to 
say more about Turing machines that take 
other Turing machines as input.



The Universal Turing Machine

• We could, with some effort, formalize a scheme 
for representing Turing machines by strings.  We 
would need the string to code the number of 
states, the number of letters in the input alphabet 
and in the tape alphabet, the special states, and the 
transition function.  

• It doesn’t really matter how this information is 
stored, as long as it’s possible for an algorithm 
(and therefore a Turing machine) to answer 
questions about the states and transition function.



The Universal Turing Machine

• Once this is done, it is possible to build a 
universal Turing machine.  

• This machine takes two inputs, a Turing machine 
M and a string w over M’s input alphabet.  

• It simulates the action of M on w, accepting or 
rejecting if and only if M would accept or reject 
w.

• Now we have a Turing machine that acts on 
Turing machines.



The Barber of Seville Language

• The Barber of Seville shaves exactly those men of 
Seville who do not shave themselves.  

• Bertrand Russell proposed this statement as 
a logical paradox.

• If the barber is a man of Seville who does not 
shave himself, the rule obligates him to shave 
himself.  

• And if he is a man of Seville who does shave 
himself, the rule forbids him to shave himself.



The Barber of Seville Language

• The only solution is that he is not from Seville, 
or that she is not a man.

• Define the Barber of Seville language to 
be the set of TM’s that do not accept themselves.  
Formally, LBS is the set {M: M ∉ L(M)} or {M: (M, 
M) ∉ L(U)} where U is the universal TM. 

• A Barber of Seville Turing machine 
would be a TM MBS such that  L(MBS) = LBS, a TM 
that accepts exactly those TM’s that don’t accept 
themselves.



Non-TD and Non-TR Languages

• Just as the Barber can’t be a man of Seville, 
the machine MBS cannot exist.  If it did, MBS 
either would accept MBS or it wouldn’t.  If it 
does, by definition it doesn’t, and if it doesn’t, 
by definition it does.

• This tells us that the language LBS is not Turing 
recognizable because it is not the language of 
any Turing machine.  Since all decidable 
languages are also recognizable, LBS is not 
decidable either.



Clicker Question #2

• What about the set of Turing machines that 
do recognize themselves, {M: (M, M) ∈ L(U)}?  
Is this set Turing recognizable?

• (a) Yes, because you can run U on (M, M) and 
see whether it ever halts.

• (b) Yes, because otherwise it would be Turing 
decidable and it isn’t.

• (c)  No, because its complement is not TR.

• (d)  No, it is Turing decidable instead.



Answer #2

• What about the set of Turing machines that 
do recognize themselves, {M: (M, M) ∈ L(U)}?  
Is this set Turing recognizable?

• (a) Yes, because you can run U on (M, M) and 
see whether it ever halts.

• (b) Yes, because otherwise it would be Turing 
decidable and it isn’t.

• (c)  No, because its complement is not TR.

• (d)  No, it is Turing decidable instead.



Non-TD and Non-TR Languages
• But note that the language LBS-bar is recognizable.  

It is the union of the set of strings that don’t code 
Turing machines at all, and the set of TM’s that do 
accept themselves.  

• We can recognize the latter set by taking any 
machine M and feeding the pair (M, M) to the 
universal TM.  The former set is decidable, assuming 
that we have defined our coding scheme 
unambiguously.

• So we have an example of a language that is 
recognizable but not decidable.



Getting More Non-TD Languages

• Of course it would be much more interesting 
to have an undecidable language that we 
actually might have wanted to decide.  

• We can do this by the method of 
reduction.  Given a language X, we prove 
that we could decide LBS if we had a decider 
for X.  Then since the decider for LBS  cannot 
exist, the decider for X cannot exist either.



More Non-TD Languages

• For example, let Lhalt be the set of all pairs (M, w) 
such that M is a TM that eventually halts on the 
input string w.  Suppose I had a decider for Lhalt.  

• Given any Turing machine M, I can now decide 
whether M is in LBS by forming the pair (M, M) 
and feeding it to the Lhalt decider.  If the decider 
says that M will not halt on M, then M is in LBS.  If 
it will halt, I can then run M on M and see 
whether it accepts, knowing that this computation 
will not run forever. 



Clicker Question #3

• Let EL = {M: L(M) = ∅} be the set of TM’s that do not 
accept any strings.  How would I use the method of 
reduction to prove that EL is not TD?

• (a) Show that LBS is a subset of EL.

• (b) Show that given any M, I can make a Turing 
machine f(M) so that M ∈ EL ↔ f(M) ∈ LBS.

• (c) Show that given any M, I can make a Turing 
machine f(M) so that M ∈ LBS ↔ f(M) ∈ EL.

• (d) Show that LBS and EL are the same language.



Answer #3

• Let EL = {M: L(M) = ∅} be the set of TM’s that do not 
accept any strings.  How would I use the method of 
reduction to prove that EL is not TD?

• (a) Show that LBS is a subset of EL.

• (b) Show that given any M, I can make a Turing 
machine f(M) so that M ∈ EL ↔ f(M) ∈ LBS.

• (c) Show that given any M, I can make a Turing machine 
f(M) so that M ∈ LBS ↔ f(M) ∈ EL.

• (d) Show that LBS and EL are the same language.



More Non-TD Languages
• As we build up a library of undecidable 

languages, we can use any of them in place of 
LBS in this kind of argument.

• For example, Conway’s Game of Life is 
a set of rules that lets patterns of pixels 
“evolve” over time.  It’s undecidable whether a 
pattern will stay bounded, or ever include a 
given pixel.



More Non-TD Languages

• The proof of this is remarkable -- someone 
designed a way to emulate an arbitrary Turing 
machine with a pixel pattern.  

• So a decider for the Game of Life questions 
could be used to answer undecidable 
questions about TM’s.



Turing Completeness

• In CMPSCI 311 and 501, you will spend a lot 
of time with the concept of complete 
languages for a class.  

• Lhalt turns out to be Turing complete, or 
complete for the set of recognizable 
languages.  We can take any recognizable 
language X, and any string w, and transform w 
into a string f(w) such that w is in X if and 
only if f(w) is in Lhalt.



Turing Completeness

• This means that the language Lhalt captures 
every possible Turing recognizable 
computation.

• If we could decide Lhalt, then, we could decide 
every TR language.  But we know that TR 
languages exists that are not TD.  So Lhalt is 
not TD.

• In the same way, we see that no Turing-
complete language is TD.



NP-Completeness

• The class NP or nondeterministic polynomial time 
is the set of languages that are recognized by 
nondeterministic Turing machines in polynomial 
time.  

• If we prove a language to be NP-complete by 
showing that any NP language can be reduced to it, 
we are pretty sure that it is not actually decidable in 
polynomial time by a deterministic TM.  

• This is because if it were the classes P and NP 
would be the same, and we are pretty sure that 
they are not.


