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Kleene’s Theorem: What and Why?

• We have now defined two classes of formal 
languages -- regular languages that are 
denoted by regular expressions, and what we 
will call recognizable languages that are 
decided by a DFA.  

• Kleene’s Theorem, the subject of the next 
several lectures, says that these two classes 
are the same.



Kleene’s Theorem

• Mathematically, it’s interesting that two 
classes with such different definitions should 
turn out to coincide -- it suggests that the 
class is important.  

• But the theorem also has practical 
consequences.

• A class of languages is closed under an 
operation if applying the operation to 
elements of the class results in another 
element.



Kleene’s Theorem

• It’s easy to see that the regular languages are 
closed under union, concatenation, and star, 
and that the recognizable languages are 
closed under complement and intersection. 

• The theorem tells us that both classes have all 
these closure properties.

• The efficient way to test whether a string is 
in a regular language is to create the DFA for 
the language and run it on the string.



Nondeterminism
• DFA’s are deterministic in that the same 

input always leads to the same output.  

• Some algorithms are not deterministic because 
they are randomized, but here we will consider 
“algorithms” that are not deterministic because 
they are underdefined -- given a single 
input, more than one output is possible.

• We had an example of such an algorithm with 
our generic search, which didn’t say which 
element came off the open list when we 
needed a new one.



Nondeterministic Finite Automata

• Formally, a nondeterministic finite 
automaton or NFA has an alphabet, state 
set, start state, and final state just like a DFA.  

• But instead of the transition function δ, it has 
a transition relation ∆ ⊆ Q × Σ × Q.  If 
(p, a, q) ∈ ∆, the NFA may move to state q if 
it sees the letter a while in state p.  



Drawing an NFA

• We draw an NFA like a 
DFA, with an a-arrow from p 
to q whenever (p, a, q) ∈ ∆. 

• The NFA no longer has the 
rule that there must be 
exactly one arrow for each 
letter out of each state -- 
there may be more than 
one, or none.
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The Language of an NFA

• We can no longer say what the NFA will do 
when reading a string, only what it might do.  
The language of an NFA N is defined to be 
the set {w: w might be accepted by N}.  

• More formally, we define a relation ∆* ⊆ Q × 
Σ* × Q so that the triple (p, w, q) is in ∆* if and 
only if N might go from p to q while reading w. 

• Then w ∈ L(N) ↔ (i, w, f) ∈ ∆* for some final 

state f ∈ F.



Clicker Question #1

• A string w is in the language of 
this NFA if it is possible to follow 
a path with the letters of w from 
the start state to a final state.  
Which string is not in L(N)?

• (a) abaa

• (b) baab

• (c) bbaa

• (d) bbba

a a

b

a

aa

a

b
bb



Answer #1

• A string w is in the language of 
this NFA if it is possible to follow 
a path with the letters of w from 
the start state to a final state.  
Which string is not in L(N)?

• (a) abaa

• (b) baab

• (c) bbaa

• (d) bbba (bbb can only go one place)
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An NFA Example

• Consider the NFA N with 
state set {i, p, q}, start state i, 
final state set {i}, alphabet {a, 
b, c}, and ∆ = {(i, a, i), (i, a, p), 
(p, b, i), (i, b, q), (q, c, i)}.  

• This is nondeterministic 
because there are two a-
moves out of i, and several 
situations with no move at 
all. 
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An NFA Example

• Here L(N) is the regular 
language (a + ab+ bc)*, because 
any path from i to itself must 
consist of pieces labeled a, ab, or 
bc.

• It is not immediately clear how, 
for a larger NFA, we could 
determine whether a particular 
string was in L(N).  Our method 
will be to turn N into a DFA.
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Interpretations of Nondeterminism

• Because we can’t speak clearly of “what 
happens when we run N on w”, we need 
other ways to think of the action of an NFA.

• In our proofs, we will just replace “w ∈ L(N)” 
by “∃f: (i, w, f) ∈ ∆*” and argue about the 
possible w-paths in the graph of N.



Interpretations of Nondeterminism

• Suppose the NFA makes a choice uniformly 
at random whenever it has more than one 
option.  This makes it a Markov process in 
the language of CMPSCI 240.

• In this case w ∈ L(N) if and only if the 
probability that N goes to a final state on w is 
positive.  If there is a path, there is a nonzero 
probability of N taking it, and if there is no 
path, of course it cannot possibly reach a final 
state.



Interpretations of Nondeterminism

• Another interpretation has us fork a 
process whenever N is faced with a choice.  
One process takes each choice, and if any of 
the processes reaches a final state when it is 
done reading w, then w ∈ L(N).

• “When you come to a fork in the road... take 
it.” (Y. Berra)



The Model of λ-NFA’s

• The main reason to use NFA’s is that they are 
easier to design in many situations when we 
have some other definition of the language. 

• Often we will find it convenient to give the 
NFA the option to jump from one state to 
another without reading a letter.  

• A λ-move is a transition (p, λ, q)  that 
allows a λ-NFA to do just that.  



The Model of λ-NFA’s

• We need to redefine the 
type of ∆, so that it is a 
subset of Q × (Σ ∪ {λ}) × Q.

• In the diagram, this transition 
is represented by an arrow 
from p to q labeled with λ.
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Paths in a λ-NFA

• Formally ∆* is now more 
complicated to define.  We say 
that (p, λ, q) ∈ ∆*  if there is a 
path of λ-moves from p to q.  

• Then we define ∆*(p, wa, q) to 
be true if and only if there 
exist states r, s, and t such that 
(p, w, r), (r, λ, s) and (t, λ, q) are 
all in ∆*, and (s, a, t) is in ∆.

s

p r

q

t

λ

a

w

λ



Paths in a λ-NFA

• What this means is that ∆*(p, 
w, q) is true if and only if there 
exists a path from p to q such 
that the letters on the path, 
read in order, spell out w. 

• There may be any number of 
λ-moves in the path as well.

• (Thus we don’t even know 
how long the path from p to q 
might be.)
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Clicker Question #2

• Which of these strings is not in 
the language of this λ-NFA?

• (a) λ

• (b) aab

• (c) bbabb

• (d) Trick question: all three are 
in the language.
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Answer #2

• Which of these strings is not in 
the language of this λ-NFA?

• (a) λ

• (b) aab (can’t have two a’s in a row)

• (c) bbabb

• (d) Trick question: all three are in 
the language.
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The Subset Construction

• Next lecture we’ll see how to convert λ-
NFA’s to ordinary NFA’s.  

• Now, though, we will convert ordinary NFA’s 
to DFA’s using the Subset Construction. 

• Given an NFA N with state set Q, we will 
build a DFA D whose states will be sets of 
states of N -- formally, D’s state set is the 
power set of Q.



The Subset Construction
• Here’s an example of an NFA N for the 

language (0 + 01)*, with two states i and p, 
start state i, final state set {i}, and transitions 
(i, 0, i), (i, 0, p), and (p, 1, i).

• At the start of its run, N must be in state i.  If 
the first letter is 0, then it might be in either 
state i or p after reading the 0.  If the first 
letter is 1, there is no run of N that reads 
that letter.
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The Subset Construction
• Our DFA D has states ∅, {i}, {p}, and {i, p}.  

• Its start state is {i}, its final states are {i} and 
{i, p}, and we have δ({i}, 0) = {i, p}, δ({i}, 1) = 
∅, δ({i, p}, 0) = {i, p}, δ({i, p}, 1) = {i}, δ({p}, 0) 
= ∅, δ({p}, 1) = {i}, and δ(∅, a) = ∅ for both 
letters.
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Details of the Construction

• The general construction works just like this 
example.  

• The start state of D is {i}, where i is the start 
state of N.  

• The final state set of D is the set of all states 
of D that contain final states of N, since we 
want D to accept if and only if N can accept.



Details of the Construction

• In general, we need to define δ(S, a), where S 
is a state of D, meaning that S is a set of 
states of N.  

• S represents the possible places N might be 
before reading the a.  The set T = δ(S, a) will 
be the set of all states q such that the 
transition (s, a, q) is in ∆ for some s ∈ S.  

• In the graph, we take the set of destinations 
of all the a-arrows that start from a state of 
S.  



Details of the Construction

• The most common mistake in computing δ 
comes when one of the states in S has no a-
arrows out of it.  

• Students often think that ∅ must now be part of 
δ(S, a).  But in fact δ(S, a) is the union of the sets 
{q: ∆(s, a, q)} for each s ∈ S. 

• So the empty set is part of the result, but doesn’t 
show up in the description of the result because 
unioning with ∅ is the identity operation on sets.



Applying This to No-aba
• The language Yes-aba has an easy regular 

expression Σ*abaΣ*.  From this expression we 
can build an NFA N with state set {1, 2, 3, 4}, 
start state 1, final state set {4}, and ∆ = {(1, a, 
1), (1, b, 1), (1, a, 2), (2, b, 3), (3, a, 4), (4, a, 4), 
(4, b, 4)}.  

• But what if we want a machine for No-aba?  
Switching the final and non-final states of N 
will not do -- can you see why?

1 a 2 b 3 a 4

a,b a,b



Clicker Question #3

• What is the language of this NFA?

• (a) (a + b)* + a + ab

• (b) (a + b)* + (a + b)*a + (a + b)*ab

• (c) (a + b)*

• (d) All three expressions are correct.
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Clicker Question #3

• What is the language of this NFA?

• (a) (a + b)* + a + ab

• (b) (a + b)* + (a + b)*a + (a + b)*ab

• (c) (a + b)*

• (d) All three expressions are correct.
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a,b a,b



Applying This to No-aba
• The best way to get a DFA for 

No-aba is to first get one for Yes-
aba.  

• We begin with the start state {1} 
and compute δ({1}, a) = {1, 2} and 
δ({1}, b) = {1}. Then we compute 
δ({1, 2}, a) = {1, 2} and δ({1, 2}, b) 
= {1, 3}.
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Applying This to No-aba
• Since {1, 3} is new, we must 

compute δ({1, 3}, a) = {1, 2, 4} and 
δ({1, 3}, b) = {1}.  

• Then we get δ({1, 2, 4}, a) = {1, 2, 
4} and δ({1, 2, 4}, b) = {1, 3, 4}.  
Not done yet! 

• We have δ({1, 3, 4}, a) = {1, 2, 4} 
and δ({1, 3, 4}, b) = {1, 4}. 
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Applying This to No-aba

• Finally, with δ({1, 4}, a) = {1, 2, 4} 
and δ({1, 4}, b) = {1, 4}, we’re done 
-- we have all reachable states.

• If we minimized this DFA, the 
three final states would merge 
into one.  This gives us our four-
state DFA for Yes-aba, from which 
we can get one for No-aba.
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Validity of the Construction

• How can we prove that for any NFA N, the 
DFA D that we construct in this way has 
L(D) = L(N)?  

• The key property of D is that for any string 
w, δ*({i}, w) is exactly the set of states {q: 
∆*(i, w, q)} that could be reached from i on a 
w-path.  

• We prove this property by induction -- it is 
clearly true for λ (though if we had λ-moves 
it would not be).



Validity of the Construction
• If we assume that δ*({i}, w) = {q: ∆*(i, w, q)}, 

we can then prove δ*({i}, wa) = {r: ∆*(i, wa, r)} 
for an arbitrary letter a, using the inductive 
definition of δ* in terms of δ, of δ in terms of 
∆, and of ∆* in terms of ∆.

• Once this is done, it is clear that w ∈ L(D) ↔ 

∃f: f ∈ δ*({i}, w) ↔ ∃f: ∆*(i, w, f) ↔ w ∈ L(N).

• Note that in general D could have 2k states 
when N has k states.  But if we leave out 
unreachable states, D could be much smaller.


