CMPSCI 250: Introduction to Computation

Lecture \#33: NFA's and the Subset Construction
David Mix Barrington
14 April 2014

Nondeterministic Finite Automata

- Kleene's Theorem: What and Why?
- Nondeterministic Finite Automata
- The Language of an NFA
- The Model of λ-NFA's
- The Subset Construction: NFA's to DFA's
- Applying the Construction to No-aba
- The Validity of the Construction

Kleene's Theorem:What and Why?

- We have now defined two classes of formal languages -- regular languages that are denoted by regular expressions, and what we will call recognizable languages that are decided by a DFA.
- Kleene's Theorem, the subject of the next several lectures, says that these two classes are the same.

Kleene's Theorem

- Mathematically, it's interesting that two classes with such different definitions should turn out to coincide -- it suggests that the class is important.
- But the theorem also has practical consequences.
- A class of languages is closed under an operation if applying the operation to elements of the class results in another element.

Kleene's Theorem

- It's easy to see that the regular languages are closed under union, concatenation, and star, and that the recognizable languages are closed under complement and intersection.
- The theorem tells us that both classes have all these closure properties.
- The efficient way to test whether a string is in a regular language is to create the DFA for the language and run it on the string.

Nondeterminism

- DFA's are deterministic in that the same input always leads to the same output.
- Some algorithms are not deterministic because they are randomized, but here we will consider "algorithms" that are not deterministic because they are underdefined -- given a single input, more than one output is possible.
- We had an example of such an algorithm with our generic search, which didn't say which element came off the open list when we needed a new one.

Nondeterministic Finite Automata

- Formally, a nondeterministic finite automaton or NFA has an alphabet, state set, start state, and final state just like a DFA.
- But instead of the transition function δ, it has a transition relation $\Delta \subseteq \mathrm{Q} \times \Sigma \times \mathrm{Q}$. If $(p, a, q) \in \Delta$, the NFA may move to state q if it sees the letter a while in state p.

Drawing an NFA

- We draw an NFA like a DFA, with an a-arrow from p to q whenever $(p, a, q) \in \Delta$.
- The NFA no longer has the rule that there must be exactly one arrow for each
 letter out of each state -there may be more than one, or none.

The Language of an NFA

- We can no longer say what the NFA will do when reading a string, only what it might do. The language of an NFA N is defined to be the set $\{\mathrm{w}: \mathrm{w}$ might be accepted by N$\}$.
- More formally, we define a relation $\Delta^{*} \subseteq \mathrm{Q} \times$ $\Sigma^{*} \times \mathrm{Q}$ so that the triple ($\mathrm{p}, \mathrm{w}, \mathrm{q}$) is in Δ^{*} if and only if N might go from p to q while reading w .
- Then $w \in L(N) \leftrightarrow(i, w, f) \in \Delta^{*}$ for some final state $f \in F$.

Clicker Question \#I

- A string w is in the language of this NFA if it is possible to follow a path with the letters of w from the start state to a final state. Which string is not in $\mathrm{L}(\mathrm{N})$?
- (a) abaa

- (b) baab
- (c) bbaa
- (d) bbba

Answer \#I

- A string w is in the language of this NFA if it is possible to follow a path with the letters of w from the start state to a final state. Which string is not in $\mathrm{L}(\mathrm{N})$?
- (a) abaa

- (b) baab
- (c) bbaa
- (d) bbba (bbb can only go one place)

An NFA Example

- Consider the NFA N with state set $\{i, p, q\}$, start state i, final state set $\{i\}$, alphabet $\{\mathrm{a}$, $\mathrm{b}, \mathrm{c}\}$, and $\Delta=\{(\mathrm{i}, \mathrm{a}, \mathrm{i}),(\mathrm{i}, \mathrm{a}, \mathrm{p})$, (p, b, i), (i, b, q), (q, c, i)\}.

- This is nondeterministic because there are two amoves out of i, and several situations with no move at all.

An NFA Example

- Here $L(N)$ is the regular language $(a+a b+b c)^{*}$, because any path from i to itself must consist of pieces labeled a, ab, or bc.

- It is not immediately clear how, for a larger NFA, we could determine whether a particular string was in $\mathrm{L}(\mathrm{N})$. Our method will be to turn N into a DFA.

Interpretations of Nondeterminism

- Because we can't speak clearly of "what happens when we run N on w ", we need other ways to think of the action of an NFA.
- In our proofs, we will just replace " $w \in L(N)$ " by " $\exists \mathrm{f}$: $(\mathrm{i}, \mathrm{w}, \mathrm{f}) \in \Delta^{* "}$ " and argue about the possible w-paths in the graph of N .

Interpretations of Nondeterminism

- Suppose the NFA makes a choice uniformly at random whenever it has more than one option. This makes it a Markov process in the language of CMPSCI 240.
- In this case $w \in L(N)$ if and only if the probability that N goes to a final state on w is positive. If there is a path, there is a nonzero probability of N taking it, and if there is no path, of course it cannot possibly reach a final state.

Interpretations of Nondeterminism

- Another interpretation has us fork a process whenever N is faced with a choice. One process takes each choice, and if any of the processes reaches a final state when it is done reading w, then $w \in L(N)$.
- "When you come to a fork in the road... take it." (Y. Berra)

The Model of λ-NFA's

- The main reason to use NFA's is that they are easier to design in many situations when we have some other definition of the language.
- Often we will find it convenient to give the NFA the option to jump from one state to another without reading a letter.
- A $\boldsymbol{\lambda}$-move is a transition (p, λ, q) that allows a $\boldsymbol{\lambda}$-NFA to do just that.

The Model of λ-NFA's

- We need to redefine the type of Δ, so that it is a
 subset of $Q \times(\Sigma \cup\{\lambda\}) \times Q$.
- In the diagram, this transition is represented by an arrow from p to q labeled with λ.

Paths in a λ-NFA

- Formally Δ^{*} is now more complicated to define. We say that $(p, \lambda, q) \in \Delta^{*}$ if there is a path of λ-moves from p to q.
- Then we define $\Delta^{*}(p, w a, q)$ to be true if and only if there exist states r, s, and t such that ($\mathrm{p}, \mathrm{w}, \mathrm{r}$), ($\mathrm{r}, \lambda, \mathrm{s}$) and ($\mathrm{t}, \lambda, \mathrm{q}$) are all in Δ^{*}, and $(\mathrm{s}, \mathrm{a}, \mathrm{t})$ is in Δ.

Paths in a λ-NFA

- What this means is that $\Delta^{*}(p$,

$$
(\mathrm{p}, \mathrm{ab}, \mathrm{q}) \in \Delta^{*}
$$ w, q) is true if and only if there exists a path from p to q such that the letters on the path, read in order, spell out w.

- There may be any number of λ-moves in the path as well.
- (Thus we don't even know how long the path from p to q might be.)

Clicker Question \#2

- Which of these strings is not in the language of this λ-NFA?
- (a) λ
- (b) aab

- (c) bbabb
- (d) Trick question: all three are in the language.

Answer \#2

- Which of these strings is not in the language of this λ-NFA?
- (a) λ
- (b) aab (can't have two a's in a row)
- (c) bbabb
- (d) Trick question: all three are in the language.

The Subset Construction

- Next lecture we'll see how to convert λ NFA's to ordinary NFA's.
- Now, though, we will convert ordinary NFA's to DFA's using the Subset Construction.
- Given an NFA N with state set Q , we will build a DFA D whose states will be sets of states of N -- formally, D's state set is the power set of Q.

The Subset Construction

- Here's an example of an NFA N for the language $(0+0 I)^{*}$, with two states i and p, start state i, final state set $\{i\}$, and transitions (i, , , i), (i, $0, \mathrm{p}$), and ($\mathrm{p}, \mathrm{I}, \mathrm{i}$).
- At the start of its run, N must be in state i . If the first letter is 0 , then it might be in either state i or p after reading the 0 . If the first letter is I , there is no run of N that reads that letter.

The Subset Construction

- Our DFA D has states $\varnothing,\{i\},\{p\}$, and $\{i, p\}$.
- Its start state is $\{i\}$, its final states are $\{i\}$ and $\{i, p\}$, and we have $\delta(\{i\}, 0)=\{i, p\}, \delta(\{i\}, 1)=$ $\varnothing, \delta(\{i, p\}, 0)=\{i, p\}, \delta(\{i, p\}, I)=\{i\}, \delta(\{p\}, 0)$ $=\varnothing, \delta(\{p\}, I)=\{i\}$, and $\delta(\varnothing, a)=\varnothing$ for both letters.

Details of the Construction

- The general construction works just like this example.
- The start state of D is $\{i\}$, where i is the start state of N .
- The final state set of D is the set of all states of D that contain final states of N, since we want D to accept if and only if N can accept.

Details of the Construction

- In general, we need to define $\delta(S, a)$, where S is a state of D, meaning that S is a set of states of N .
- S represents the possible places N might be before reading the a . The set $\mathrm{T}=\delta(\mathrm{S}, \mathrm{a})$ will be the set of all states q such that the transition ($\mathrm{s}, \mathrm{a}, \mathrm{q}$) is in Δ for some $\mathrm{s} \in \mathrm{S}$.
- In the graph, we take the set of destinations of all the a-arrows that start from a state of S.

Details of the Construction

- The most common mistake in computing δ comes when one of the states in S has no aarrows out of it.
- Students often think that \varnothing must now be part of $\delta(\mathrm{S}, \mathrm{a})$. But in fact $\delta(\mathrm{S}, \mathrm{a})$ is the union of the sets $\{q: \Delta(s, a, q)\}$ for each $s \in S$.
- So the empty set is part of the result, but doesn't show up in the description of the result because unioning with \varnothing is the identity operation on sets.

Applying This to No-aba

- The language Yes-aba has an easy regular expression $\Sigma^{*} \mathrm{aba} \Sigma^{*}$. From this expression we can build an NFA N with state set $\{1,2,3,4\}$, start state I, final state set $\{4\}$, and $\Delta=\{(1, a$, I), (I, b, I), (I, a, 2), (2, b, 3), (3, a, 4), (4, a, 4), $(4, b, 4)\}$.
- But what if we want a machine for No-aba? Switching the final and non-final states of N will not do -- can you see why?

Clicker Question \#3

- What is the language of this NFA?
- (a) $(a+b)^{*}+a+a b$
- (b) $(a+b)^{*}+(a+b)^{*} a+(a+b)^{*} a b$
- (c) $(a+b)^{*}$
- (d) All three expressions are correct.

Clicker Question \#3

- What is the language of this NFA?
- (a) $(a+b)^{*}+a+a b$
- (b) $(a+b)^{*}+(a+b)^{*} a+(a+b)^{*} a b$
- (c) $(a+b)^{*}$
- (d) All three expressions are correct.

Applying This to No-aba

- The best way to get a DFA for No-aba is to first get one for Yesaba.
- We begin with the start state $\{I\}$ and compute $\delta(\{I\}, a)=\{I, 2\}$ and $\delta(\{I\}, b)=\{I\}$. Then we compute $\delta(\{I, 2\}, a)=\{I, 2\}$ and $\delta(\{I, 2\}, b)$ $=\{1,3\}$.

Applying This to No-aba

- Since $\{I, 3\}$ is new, we must compute $\delta(\{I, 3\}, a)=\{I, 2,4\}$ and $\delta(\{I, 3\}, b)=\{I\}$.
- Then we get $\delta(\{I, 2,4\}, a)=\{I, 2$, $4\}$ and $\delta(\{1,2,4\}, b)=\{1,3,4\}$. Not done yet!
- We have $\delta(\{I, 3,4\}, a)=\{I, 2,4\}$
and $\delta(\{I, 3,4\}, b)=\{I, 4\}$.

Applying This to No-aba

- Finally, with $\delta(\{I, 4\}, a)=\{1,2,4\}$ and $\delta(\{I, 4\}$, b) $=\{I, 4\}$, we're done -- we have all reachable states.
- If we minimized this DFA, the three final states would merge into one. This gives us our fourstate DFA for Yes-aba, from which we can get one for No-aba.

Validity of the Construction

- How can we prove that for any NFA N, the DFA D that we construct in this way has $\mathrm{L}(\mathrm{D})=\mathrm{L}(\mathrm{N})$?
- The key property of D is that for any string $\mathrm{w}, \delta^{*}(\{i\}, \mathrm{w})$ is exactly the set of states $\{q$: $\left.\Delta^{*}(\mathrm{i}, \mathrm{w}, \mathrm{q})\right\}$ that could be reached from i on a w-path.
- We prove this property by induction -- it is clearly true for λ (though if we had λ-moves it would not be).

Validity of the Construction

- If we assume that $\delta^{*}(\{i\}, w)=\left\{q: \Delta^{*}(\mathrm{i}, \mathrm{w}, \mathrm{q})\right\}$, we can then prove $\delta^{*}(\{i\}, \mathrm{wa})=\left\{\mathrm{r}: \Delta^{*}(\mathrm{i}, \mathrm{wa}, \mathrm{r})\right\}$ for an arbitrary letter a, using the inductive definition of δ^{*} in terms of δ, of δ in terms of Δ, and of Δ^{*} in terms of Δ.
- Once this is done, it is clear that $w \in L(D) \leftrightarrow$ ヨf: $f \in \delta^{*}(\{i\}, w) \leftrightarrow \exists f: \Delta^{*}(i, w, f) \leftrightarrow w \in L(N)$.
- Note that in general D could have 2^{k} states when N has k states. But if we leave out unreachable states, D could be much smaller.

