
CMPSCI 250: Introduction to
Computation

Lecture #33: NFA’s and the Subset Construction
David Mix Barrington
14 April 2014

Nondeterministic Finite Automata

• Kleene’s Theorem: What and Why?

• Nondeterministic Finite Automata

• The Language of an NFA

• The Model of λ-NFA’s

• The Subset Construction: NFA’s to DFA’s

• Applying the Construction to No-aba

• The Validity of the Construction

Kleene’s Theorem: What and Why?

• We have now defined two classes of formal
languages -- regular languages that are
denoted by regular expressions, and what we
will call recognizable languages that are
decided by a DFA.

• Kleene’s Theorem, the subject of the next
several lectures, says that these two classes
are the same.

Kleene’s Theorem

• Mathematically, it’s interesting that two
classes with such different definitions should
turn out to coincide -- it suggests that the
class is important.

• But the theorem also has practical
consequences.

• A class of languages is closed under an
operation if applying the operation to
elements of the class results in another
element.

Kleene’s Theorem

• It’s easy to see that the regular languages are
closed under union, concatenation, and star,
and that the recognizable languages are
closed under complement and intersection.

• The theorem tells us that both classes have all
these closure properties.

• The efficient way to test whether a string is
in a regular language is to create the DFA for
the language and run it on the string.

Nondeterminism
• DFA’s are deterministic in that the same

input always leads to the same output.

• Some algorithms are not deterministic because
they are randomized, but here we will consider
“algorithms” that are not deterministic because
they are underdefined -- given a single
input, more than one output is possible.

• We had an example of such an algorithm with
our generic search, which didn’t say which
element came off the open list when we
needed a new one.

Nondeterministic Finite Automata

• Formally, a nondeterministic finite
automaton or NFA has an alphabet, state
set, start state, and final state just like a DFA.

• But instead of the transition function δ, it has
a transition relation ∆ ⊆ Q × Σ × Q. If
(p, a, q) ∈ ∆, the NFA may move to state q if
it sees the letter a while in state p.

Drawing an NFA

• We draw an NFA like a
DFA, with an a-arrow from p
to q whenever (p, a, q) ∈ ∆.

• The NFA no longer has the
rule that there must be
exactly one arrow for each
letter out of each state --
there may be more than
one, or none.

a a

b

a

aa

a

b
bb

The Language of an NFA

• We can no longer say what the NFA will do
when reading a string, only what it might do.
The language of an NFA N is defined to be
the set {w: w might be accepted by N}.

• More formally, we define a relation ∆* ⊆ Q ×
Σ* × Q so that the triple (p, w, q) is in ∆* if and
only if N might go from p to q while reading w.

• Then w ∈ L(N) ↔ (i, w, f) ∈ ∆* for some final

state f ∈ F.

Clicker Question #1

• A string w is in the language of
this NFA if it is possible to follow
a path with the letters of w from
the start state to a final state.
Which string is not in L(N)?

• (a) abaa

• (b) baab

• (c) bbaa

• (d) bbba

a a

b

a

aa

a

b
bb

Answer #1

• A string w is in the language of
this NFA if it is possible to follow
a path with the letters of w from
the start state to a final state.
Which string is not in L(N)?

• (a) abaa

• (b) baab

• (c) bbaa

• (d) bbba (bbb can only go one place)

a a

b

a

aa

a

b
bb

An NFA Example

• Consider the NFA N with
state set {i, p, q}, start state i,
final state set {i}, alphabet {a,
b, c}, and ∆ = {(i, a, i), (i, a, p),
(p, b, i), (i, b, q), (q, c, i)}.

• This is nondeterministic
because there are two a-
moves out of i, and several
situations with no move at
all.

a
p

b
i a

q
cb

An NFA Example

• Here L(N) is the regular
language (a + ab+ bc)*, because
any path from i to itself must
consist of pieces labeled a, ab, or
bc.

• It is not immediately clear how,
for a larger NFA, we could
determine whether a particular
string was in L(N). Our method
will be to turn N into a DFA.

a
p

b
i a

q
cb

Interpretations of Nondeterminism

• Because we can’t speak clearly of “what
happens when we run N on w”, we need
other ways to think of the action of an NFA.

• In our proofs, we will just replace “w ∈ L(N)”
by “∃f: (i, w, f) ∈ ∆*” and argue about the
possible w-paths in the graph of N.

Interpretations of Nondeterminism

• Suppose the NFA makes a choice uniformly
at random whenever it has more than one
option. This makes it a Markov process in
the language of CMPSCI 240.

• In this case w ∈ L(N) if and only if the
probability that N goes to a final state on w is
positive. If there is a path, there is a nonzero
probability of N taking it, and if there is no
path, of course it cannot possibly reach a final
state.

Interpretations of Nondeterminism

• Another interpretation has us fork a
process whenever N is faced with a choice.
One process takes each choice, and if any of
the processes reaches a final state when it is
done reading w, then w ∈ L(N).

• “When you come to a fork in the road... take
it.” (Y. Berra)

The Model of λ-NFA’s

• The main reason to use NFA’s is that they are
easier to design in many situations when we
have some other definition of the language.

• Often we will find it convenient to give the
NFA the option to jump from one state to
another without reading a letter.

• A λ-move is a transition (p, λ, q) that
allows a λ-NFA to do just that.

The Model of λ-NFA’s

• We need to redefine the
type of ∆, so that it is a
subset of Q × (Σ ∪ {λ}) × Q.

• In the diagram, this transition
is represented by an arrow
from p to q labeled with λ.

λ

qp

Paths in a λ-NFA

• Formally ∆* is now more
complicated to define. We say
that (p, λ, q) ∈ ∆* if there is a
path of λ-moves from p to q.

• Then we define ∆*(p, wa, q) to
be true if and only if there
exist states r, s, and t such that
(p, w, r), (r, λ, s) and (t, λ, q) are
all in ∆*, and (s, a, t) is in ∆.

s

p r

q

t

λ

a

w

λ

Paths in a λ-NFA

• What this means is that ∆*(p,
w, q) is true if and only if there
exists a path from p to q such
that the letters on the path,
read in order, spell out w.

• There may be any number of
λ-moves in the path as well.

• (Thus we don’t even know
how long the path from p to q
might be.)

s

p r

q

t

λ

b

a

λ

(p, ab, q) ∈ ∆*

Clicker Question #2

• Which of these strings is not in
the language of this λ-NFA?

• (a) λ

• (b) aab

• (c) bbabb

• (d) Trick question: all three are
in the language.

λλ

λ

b

a

b

Answer #2

• Which of these strings is not in
the language of this λ-NFA?

• (a) λ

• (b) aab (can’t have two a’s in a row)

• (c) bbabb

• (d) Trick question: all three are in
the language.

λλ

λ

b

a

b

The Subset Construction

• Next lecture we’ll see how to convert λ-
NFA’s to ordinary NFA’s.

• Now, though, we will convert ordinary NFA’s
to DFA’s using the Subset Construction.

• Given an NFA N with state set Q, we will
build a DFA D whose states will be sets of
states of N -- formally, D’s state set is the
power set of Q.

The Subset Construction
• Here’s an example of an NFA N for the

language (0 + 01)*, with two states i and p,
start state i, final state set {i}, and transitions
(i, 0, i), (i, 0, p), and (p, 1, i).

• At the start of its run, N must be in state i. If
the first letter is 0, then it might be in either
state i or p after reading the 0. If the first
letter is 1, there is no run of N that reads
that letter.

i

0
1

0
p

The Subset Construction
• Our DFA D has states ∅, {i}, {p}, and {i, p}.

• Its start state is {i}, its final states are {i} and
{i, p}, and we have δ({i}, 0) = {i, p}, δ({i}, 1) =
∅, δ({i, p}, 0) = {i, p}, δ({i, p}, 1) = {i}, δ({p}, 0)
= ∅, δ({p}, 1) = {i}, and δ(∅, a) = ∅ for both
letters.

i

0
1

0
p

0,1

{p}∅

{i,p}{i}

1

0

0

1
1

0

Details of the Construction

• The general construction works just like this
example.

• The start state of D is {i}, where i is the start
state of N.

• The final state set of D is the set of all states
of D that contain final states of N, since we
want D to accept if and only if N can accept.

Details of the Construction

• In general, we need to define δ(S, a), where S
is a state of D, meaning that S is a set of
states of N.

• S represents the possible places N might be
before reading the a. The set T = δ(S, a) will
be the set of all states q such that the
transition (s, a, q) is in ∆ for some s ∈ S.

• In the graph, we take the set of destinations
of all the a-arrows that start from a state of
S.

Details of the Construction

• The most common mistake in computing δ
comes when one of the states in S has no a-
arrows out of it.

• Students often think that ∅ must now be part of
δ(S, a). But in fact δ(S, a) is the union of the sets
{q: ∆(s, a, q)} for each s ∈ S.

• So the empty set is part of the result, but doesn’t
show up in the description of the result because
unioning with ∅ is the identity operation on sets.

Applying This to No-aba
• The language Yes-aba has an easy regular

expression Σ*abaΣ*. From this expression we
can build an NFA N with state set {1, 2, 3, 4},
start state 1, final state set {4}, and ∆ = {(1, a,
1), (1, b, 1), (1, a, 2), (2, b, 3), (3, a, 4), (4, a, 4),
(4, b, 4)}.

• But what if we want a machine for No-aba?
Switching the final and non-final states of N
will not do -- can you see why?

1 a 2 b 3 a 4

a,b a,b

Clicker Question #3

• What is the language of this NFA?

• (a) (a + b)* + a + ab

• (b) (a + b)* + (a + b)*a + (a + b)*ab

• (c) (a + b)*

• (d) All three expressions are correct.

1 a 2 b 3 a 4

a,b a,b

Clicker Question #3

• What is the language of this NFA?

• (a) (a + b)* + a + ab

• (b) (a + b)* + (a + b)*a + (a + b)*ab

• (c) (a + b)*

• (d) All three expressions are correct.

1 a 2 b 3 a 4

a,b a,b

Applying This to No-aba
• The best way to get a DFA for

No-aba is to first get one for Yes-
aba.

• We begin with the start state {1}
and compute δ({1}, a) = {1, 2} and
δ({1}, b) = {1}. Then we compute
δ({1, 2}, a) = {1, 2} and δ({1, 2}, b)
= {1, 3}.

1 a 2 b 3 a 4

{1}

{1,2,4}

{1,3}

{1,2}

a,b a,b
{1,4}

{1,3,4}

a

b

a

b

a
b

b

a
a

ba

b

Applying This to No-aba
• Since {1, 3} is new, we must

compute δ({1, 3}, a) = {1, 2, 4} and
δ({1, 3}, b) = {1}.

• Then we get δ({1, 2, 4}, a) = {1, 2,
4} and δ({1, 2, 4}, b) = {1, 3, 4}.
Not done yet!

• We have δ({1, 3, 4}, a) = {1, 2, 4}
and δ({1, 3, 4}, b) = {1, 4}.

1 a 2 b 3 a 4

{1}

{1,2,4}

{1,3}

{1,2}

a,b a,b
{1,4}

{1,3,4}

a

b

a

b

a
b

b

a
a

ba

b

Applying This to No-aba

• Finally, with δ({1, 4}, a) = {1, 2, 4}
and δ({1, 4}, b) = {1, 4}, we’re done
-- we have all reachable states.

• If we minimized this DFA, the
three final states would merge
into one. This gives us our four-
state DFA for Yes-aba, from which
we can get one for No-aba.

1 a 2 b 3 a 4

{1}

{1,2,4}

{1,3}

{1,2}

a,b a,b
{1,4}

{1,3,4}

a

b

a

b

a
b

b

a
a

ba

b

Validity of the Construction

• How can we prove that for any NFA N, the
DFA D that we construct in this way has
L(D) = L(N)?

• The key property of D is that for any string
w, δ*({i}, w) is exactly the set of states {q:
∆*(i, w, q)} that could be reached from i on a
w-path.

• We prove this property by induction -- it is
clearly true for λ (though if we had λ-moves
it would not be).

Validity of the Construction
• If we assume that δ*({i}, w) = {q: ∆*(i, w, q)},

we can then prove δ*({i}, wa) = {r: ∆*(i, wa, r)}
for an arbitrary letter a, using the inductive
definition of δ* in terms of δ, of δ in terms of
∆, and of ∆* in terms of ∆.

• Once this is done, it is clear that w ∈ L(D) ↔

∃f: f ∈ δ*({i}, w) ↔ ∃f: ∆*(i, w, f) ↔ w ∈ L(N).

• Note that in general D could have 2k states
when N has k states. But if we leave out
unreachable states, D could be much smaller.

