CMPSCI 250: Introduction to Computation

Lecture #32:The Myhill-Nerode Theorem David Mix Barrington I I April 2014

The Myhill-Nerode Theorem

- Review: L-Distinguishable Strings
- The Language Prime has no DFA
- The Relation of L-Equivalence
- More Than k Classes Means More Than k States
- Constructing a DFA From the Relation
- Completing the Proof
- The Minimal DFA and Minimizing DFA's

Review: L-Distinguishable Strings

- Let $L \subseteq \Sigma^*$ be any language. Two strings u and v are **L-distinguishable** (or **L-inequivalent**) if there exists a string w such that $uw \in L \oplus vw \in L$.
- They are **L-equivalent** if for every string w, $uw \in L \leftrightarrow vw \in L$ (we write this as $u \equiv_L v$).
- We proved last time that if a DFA takes two L-distinguishable strings to the same state, it cannot have L as its language.

Clicker Question #1

- Let $\Sigma = \{a, b\}$ and X be the language $(\Sigma^3)^*$, which is the set of all strings whose length is divisible by 3. Which one of these pairs of strings is X-distinguishable?
- (a) abab and abaaabb
- (b) aabbbbaba and λ
- (c) abba and abaa
- (d) b and bbabb

Answer #1

- Let $\Sigma = \{a, b\}$ and X be the language $(\Sigma^3)^*$, which is the set of all strings whose length is divisible by 3. Which one of these pairs of strings is X-distinguishable?
- (a) abab and abaaabb
- (b) aabbbbaba and λ
- (c) abba and abaa
- (d) b and bbabb (append b, for example)

L-Distinguishable Strings

- We use this fact to prove a lower bound on the number of states in a DFA for L. Suppose we can find a set S of k strings that are pairwise L-distinguishable. Then it is impossible for a DFA with fewer than k states to have L as its language.
- If S is an infinite set of pairwise Ldistinguishable strings, no correct DFA for L can exist at all.

The Paren Language

- For example, the language Paren $\subseteq \{L, R\}^*$ has such a set, $\{L^i: i \ge 0\}$, because if $i \ne j$ then L^iR^i is in Paren but L^iR^i is not.
- So any two distinct strings in the set are L-distinguishable.
- No DFA for Paren exists, and thus Paren is not a regular language.

Prime Has No DFA

- Let Prime be the language {aⁿ: n is a prime number}. It doesn't seem likely that any DFA could decide Prime, but this is a little tricky to prove.
- Let i and j be two naturals with i > j. We'd like to show that aⁱ and a^j are Primedistinguishable, by finding a string a^k such that aⁱa^k ∈ Prime and a^ja^k ∉ Prime (or vice versa).
- We need a natural k such that i + k is prime and j + k not, or vice versa.

Prime Has No DFA

- Pick a prime p bigger than both i and j (since there are infinitely many primes).
- Does k = p j work? It depends on whether i + (p j) is prime -- if it isn't we win because j + (p j) is prime. If it is prime, look at k = p + i 2j. Now j + k is the prime p + (i j), so if i + k = p + 2(i j) is not prime we win.
- We find a value of k that works unless all the numbers p, p + (i j), p + 2(i j),..., p + r(i j),... are prime. But p + p(i j) is not prime as it is divisible by p.

The Relation of L-Equivalence

- The relation of L-equivalence is aptly named because we can easily prove that it is an equivalence relation.
- Clearly $\forall w$: $uw \in L \leftrightarrow uw \in L$, so it is reflexive.
- If we have that $\forall w: uw \in L \leftrightarrow vw \in L$, we may conclude that $\forall w: vw \in L \leftrightarrow uw \in L$, and thus it is symmetric.
- Transitivity is equally simple to prove.

Clicker Question #2

- Again let $\Sigma = \{a, b\}$ and let $X = (\Sigma^3)^*$. Which one of these sets of strings is pairwise X-inequivalent, and thus contains one element of each X-equivalence class?
- (a) {λ, a, b}
- (b) {λ, aaa, aab, abb, bbb}
- (c) $\{\lambda, b, bb, bbb\}$
- (d) $\{\lambda, aa, abbbabb\}$

Answer #2

- Again let $\Sigma = \{a, b\}$ and let $X = (\Sigma^3)^*$. Which one of these sets of strings is pairwise X-inequivalent, and thus contains one element of each X-equivalence class?
- (a) $\{\lambda, a, b\}$
- (b) {λ, aaa, aab, abb, bbb}
- (c) $\{\lambda, b, bb, bbb\}$
- (d) $\{\lambda, aa, abbbabb\}$

The Myhill-Nerode Theorem

- We know that any equivalence relation partitions its base set into equivalence classes.
- The Myhill-Nerode Theorem says that for any language L, there exists a DFA for L with k or fewer states if and only if the Lequivalence relation's partition has k or fewer classes.

The Myhill-Nerode Theorem

- That is, if the number of classes is a natural k then there is a minimal DFA with k states.
- If the number of classes is infinite then there is no DFA at all.
- It's easiest to think of the theorem in the form: "k or fewer states
 ⇔ k or fewer classes".

$(\ge k \text{ Classes}) \rightarrow (\ge k \text{ States})$

- We've essentially already proved half of this theorem. We can take "k or fewer states → k or fewer classes" and take its contrapositive, to get "more than k classes → more than k states".
- Let L be an arbitrary language and assume that the L-equivalence relation has more than k (non-empty) equivalence classes. Let $x_1,...,x_{k+1}$ be one string from each of the first k + 1 classes.
- Since any two distinct strings in this set are in different classes, by definition they are not Lequivalent, and thus they are L-distinguishable.

$$(\ge k \text{ Classes}) \rightarrow (\ge k \text{ States})$$

- By our result from last lecture, since there exists a set of k + I pairwise L-distinguishable strings, no DFA with k or fewer states can have L as its language.
- This proves the first half of the Myhill-Nerode Theorem.
- The second half will be a bit more complicated.

Making a DFA From the Relation

- Now to prove the other half, "k or fewer classes → k or fewer states".
- In fact we will prove that if there are exactly k classes, we can build a DFA with exactly k states.
- This DFA will necessarily be the smallest possible for the language, because a smaller one would contradict the first half of the theorem, which we have just proved.

Making a DFA From the Relation

- Let L be an arbitrary language and assume that the classes of the relation are $C_1,...,C_k$. We will build a DFA with states $q_1,...,q_k$, each state corresponding to one of the classes.
- The initial state will be the state for the class containing λ . The final states will be any states that contain strings that are in L. The transition function is defined as follows. To compute $\delta(q_i, a)$, where $a \in \Sigma$, let w be any string in the class C_i and define $\delta(q_i, a)$ to be the state for the class containing the string wa.

Making a DFA From the Relation

- It's not obvious that this δ function is well-defined, since its definition contains an arbitrary choice. We must show that any choice yields the same result.
- Let u and v be two strings in the class C_i. We need to show that ua and va are in the same class as each other.
- That is, for any u, v, and a, we must show that $(u \equiv_L v) \rightarrow (ua \equiv_L va)$.

The δ Function is Well-Defined

- Assume that $\forall w: uw \in L \leftrightarrow vw \in L$.
- Let z be an arbitrary string.
- Then uaz ∈ L ↔ vaz ∈ L, because we can specialize the statement we have to az.
- We have proved that $\forall z : uaz \in L \leftrightarrow vaz \in L$, which by definition means that $ua \equiv_L va$.

Completing the Proof

- Now we prove that for this new DFA and for any string w, $\delta^*(i, w) = q_i \leftrightarrow w \in C_i$. (Here "i" is the initial state of the DFA.)
- We prove this by induction on w. Clearly $\delta^*(i, \lambda) = i$, which matches the class of λ .
- Assume as IH that $\delta^*(i, w) = x$ matches the class of w. Then for any a, $\delta^*(i, wa)$ is defined as $\delta(x, a)$, which matches the class of wa by the definition, which is what we want.

Completing the Proof

- If two strings are in the same class, either both are in L or both are not in L.
- So L is the union of the classes corresponding to our final states.
- Since the DFA takes a string to the state for its class, $\delta^*(i,w) \in F \leftrightarrow w \in L$.
- Thus this DFA decides the language L.

Clicker Question #3

- Again let $\Sigma = \{a, b\}$ and let $X = (\Sigma^3)^*$. We saw earlier that there are three X-equivalence classes, so the MN theorem gives us a DFA for X with three states. Which statement about this DFA is false?
- (a) The class of λ is final and the other two are not.
- (b) The a-arrow and b-arrow from a given state s always both go to the same state t.
- (c) The b-arrow from the class of a goes to itself.
- (d) The initial state is for the class of λ .

Answer #3

- Again let $\Sigma = \{a, b\}$ and let $X = (\Sigma^3)^*$. We saw earlier that there are three X-equivalence classes, so the MN theorem gives us a DFA for X with three states. Which statement about this DFA is false?
- (a) The class of λ is final and the other two are not.
- (b) The a-arrow and b-arrow from a given state s always both go to the same state t.
- (c) The b-arrow from the class of a goes to itself.
- (d) The initial state is for the class of λ .

The Minimal DFA

- Let X be a regular language and let M be any DFA such that L(M) = X.
- We will show that the minimal DFA, constructed from the classes of the Lequivalence relation, is **contained within** M.
- We begin by eliminating any unreachable states of M, which does not change M's language.

The Minimal DFA

- Remember that a correct DFA cannot take two L-distinguishable strings to the same state.
- So for any state p of M, the strings w such that $\delta(i, w) = p$ are all L-equivalent to each other.
- Each state of M is thus associated with one of the classes of the L-equivalence relation.

Minimizing a DFA

- The states of M are thus partitioned into classes themselves.
- If we combine each class into a single state, we get the minimal DFA.
- In discussion on Monday we will see, and then practice, a specific algorithm that will find these classes. It thus will construct the minimal DFA equivalent to any given DFA.