CMPSCI 250: Introduction to Computation

Lecture \#3I:What DFA's Can and Can't Do David Mix Barrington
9 April 2014

What DFA's Can and Can't Do

- Deterministic Finite Automata
- Formal Definition of DFA's
- Examples of DFA's
- DFA’s in Java
- Characterizing Strings With Given Behavior
- Distinguishable Strings
- Languages With No DFA’s

Deterministic Finite Automata

- We now turn to finite-state machines, a model of computation that captures the idea of reading a file of text with a fixed limit on the memory we can use to remember what we have seen.
- In particular, the memory used must be constant, independent of the length of the file. We ensure this by requiring our machine to have a finite state set, so that at any time during the computation all that it knows is which state it is in.

Deterministic Finite Automata

- The initial state is fixed. When the machine sees a new letter, it changes to a new state based on a fixed transition function. When it finishes the string, it gives a yes or no answer based on whether it is in a final state.
- Because the new state depends only on the old state and the letter seen, the computation is deterministic and the machine is called a deterministic finite automaton or DFA.

Where We Are Going

- A DFA decides a language -- it reads a string over its alphabet and then answers "yes" or "no". The language of the DFA is the set of strings for which it says yes.
- We call a language X decidable if there exists a DFA whose language is X. Later we'll prove that some languages are not decidable.

Where We Are Going

- The Myhill-Nerode Theorem will give us a way to take an arbitrary language and determine whether it is decidable.
- We'll define a particular equivalence relation on strings, based only on the language. If this relation has a finite set of equivalence classes, there is a DFA for the language, and there is a minimal DFA with as many states as there are classes. We'll see how to compute the minimal DFA from any DFA for the language.

Where We Are Going

- As we've mentioned, there is a DFA for a language if and only if the language is regular (that is, if and only if it is the language denoted by some regular expression).
- We'll prove this important result, called Kleene's Theorem, over several lectures. Our proofs will show us how to convert a DFA to a regular expression and vice versa.

Formal Definition of DFA's

- Formally a DFA is defined by its state set S, its initial state $i \in S$, its final state set $F \subseteq S$, its input alphabet Σ, and its transition function δ from $(S \times \Sigma)$ to S.
- We usually represent DFA's by diagrams (labeled directed multigraphs) with a node for each state, a special mark for the initial state, a double circle on each final state, and an arrow labeled " a " from node p to node q whenever $\delta(p, a)=q$.

A DFA Example

- Here is a DFA with state set $\{1,2,3,4\}$, initial state I, final state set $\{3\}$, alphabet $\{a, b\}$, and a transition function indicated by the arrows.

- For any string, we can follow the arrows for its letters in order. The strings a, ba, and bbbaa are in this DFA's language.

Clicker Question \#I

- Which of these strings is not in the language of this DFA?
- (a) abababbaaab
- (b) bababaaaba

- (c) aaaabbbbaaaa
- (d) bbbbbabaabaa

Answer \#I

- Which of these strings is not in the language of this DFA?
- (a) abababbaaab (I-3-2-4-2-4-2-2-4-3-I-4)
- (b) bababaaaba (1-4-3-2-4-2-4-3-1-4-3)

- (c) aaaabbbbaaaa (I-3-I-3-I-4-2-2-2-4-3-I-3)
- (d) bbbbbabaabaa (I-4-2-2-2-2-4-2-4-3-2-4-3)

Behavior of a DFA

- The behavior function of a particular DFA is a function called δ^{*} from $\left(S \times \Sigma^{*}\right)$ to S, such that $\delta^{*}(p, w)$ is the state of the DFA after it starts in state p and reads the string w.
- Formally, we say that $\delta^{*}(p, \lambda)=p$ and that $\delta^{*}(p, w a)=\delta\left(\delta^{*}(p, w), a\right)$.
- The language of a DFA is defined to be the set of strings w such that $\delta^{*}(i, w)$ is a final state. For a DFA M, we call this language L(M).

More Examples of DFA's

- One of the simplest possible DFA's decides the language of binary strings with an odd number of ones. It has two states E and O , representing whether the machine has seen an even or odd number of ones so far. The initial state is E , and the final state set is $\{\mathrm{O}\}$. The transition function has $\delta(\mathrm{E}, 0)=\mathrm{E}, \delta(\mathrm{E}, \mathrm{I})$ $=\mathrm{O}, \delta(\mathrm{O}, 0)=\mathrm{O}$, and $\delta(\mathrm{O}, \mathrm{I})=\mathrm{E}$.

More Examples of DFA's

- We can build a four-state DFA for the language EE , of strings with an even number of a's and an even number of b's.
- Its states are EE, EO, OE, and OO. For example, $\delta^{*}(E E, w)=$
 EO if w has an even number of a's and an odd number of b's.

More Examples of DFA's

- Another four-state DFA can decide whether the next to last letter of a binary string w exists and is I.
- The state set is $\{00,0 \mathrm{I}, \mathrm{I} 0, \mathrm{II}\}$ and the state after reading w represents the last two letters seen. The initial state is 00 and
 the final state set is $\{10, \mathrm{I} \mid\}$.

DFA's in Pseudo-Java

- We consider the input to be given like a file, with a method to give the next letter and one to tell when the input is done.
- We relabel the state set and the alphabet to be $\{0, \ldots$, states -1$\}$ and $\{0, \ldots$, letters - 1$\}$ respectively.

DFA's in Pseudo-Java

public class DFA \{ natural states; natural letters; natural start; boolean [] isFinal = new boolean[states]; natural [] [] delta =
new natural [states] [letters]; natural getNext() \{code omitted\} boolean inputDone() \{code omitted\}

DFA's in Pseudo-Java

```
boolean decide ( )
```

 \{// returns whether input string is
 // in the language of the DFA
 natural current = start;
 while (!inputDone())
 current =
 delta[current][getNext()];
 return isFinal [current];\}\}

The Strings With a Behavior

- How do we prove that a particular DFA has a particular language?
- With the even-odd DFA, we can say that $\delta^{*}(E, w)=E$ if w has an even number of ones, and $\delta^{*}(E, w)=O$ if it has an odd number of ones.

The Strings With a Behavior

- " $\delta^{*}(E, w)=E$ if w has an even number of ones, and $\delta^{*}(E, w)=O$ if it has an odd number of ones.'
- Letting $P(w)$ be the entire statement in the bullet above, we can prove $\forall w: P(w)$ by induction on all binary strings. $P(\lambda)$ says that $\delta^{*}(E, \lambda)=E$, because λ has no ones and 0 is even, and $\delta^{*}(E, \lambda)=E$ is true by definition of δ^{*}.

The Strings With a Behavior

- Now assume that $P(w)$ is true, so that $\delta^{*}(E, w)$ is E if w has an even number of ones and O otherwise. Then w0 has the same number of ones as w, so $\delta^{*}(E, w 0)$ should be the same state as $\delta^{*}(E, w)$. And $w l$ has one more one than w, so $\delta^{*}(E, w l)$ should be the other state from $\delta^{*}(E, w)$. In each of the four cases, the new state is the state given by the δ function of the DFA.

The No-aba Language

- The language No-aba is the set of strings that never have an aba substring.
- We can build a DFA M for No-aba with state set $\{1,2$, $3,4\}$, start state I, final state set $\{I, 2,3\}$, and transition
 function as shown. (We call 4 a death state.) We can see that an aba will take us from any state to 4.

Clicker Question \#2

- Suppose $\delta^{*}(\mathrm{I}, \mathrm{w})=4$. Which statement must be true of w ?
- (a) w contains an aba substring

- (b) $w \in$ No-aba
- (c) w contains no aaa
- (d) $w \in(a b b)^{*} a b a(a+b)^{*}$

Answer \#2

- Suppose $\delta^{*}(\mathrm{I}, \mathrm{w})=4$. Which statement must be true of w ?
- (a) w contains an aba substring
- (b) $w \in N o-a b a$

- (c) w contains no aaa
- (d) $w \in(a b b)^{*} a b a(a+b)^{*}$

Characterizing the States

- Let L_{I} be the set of strings that have no aba and don't end in a or $a b$.
- Let L_{2} be the set of strings that don't have an aba and end in a .

- L_{3} is the set of strings that don't have an aba and end in ab.
- L_{4} is the set that have aba.

Characterizing the States

- We can make eight checks, one for each value of δ. If $\delta(i, x)=$ j, we check that any string in L_{i}, followed by the letter x , yields a string in L_{j}.
- We then do an inductive proof, where $P(w)$ is the
 statement on the previous slide: "For all states i, $\delta^{*}(\mathrm{I}, \mathrm{w})$ $=i$ if and only if $w \in L_{i}$ " where each L_{i} is as defined there.
Thus $w \in L(M) \leftrightarrow w \in N o-a b a$.

Distinguishable Strings

- Is it possible that another DFA with only three states could decide No-aba?
- We divided all possible strings into four sets. Suppose a DFA reads w and does not know which of the four sets w is in.
- We'll show that in this case it is doomed -- for some string x, it will be wrong if it sees x and has to decide whether $w x$ is in the language No-aba.

Dinstinguishable Strings

- Look at the four strings $\lambda, a, a b$, and $a b a$.
- If the DFA has $\delta^{*}(i, \lambda)=\delta^{*}(i, a)$, we say that it cannot distinguish between λ and a.
- If this is true, the DFA must also have $\delta^{*}(i, b)$ $=\delta^{*}(\mathrm{i}, \mathrm{ab})$ because a b will take the same state to the same state.
- Then as well $\delta^{*}(\mathrm{i}, \mathrm{ba})=\delta^{*}(\mathrm{i}, \mathrm{aba})$.

Distinguishable Strings

- But now we know that the DFA cannot decide No-aba, because it gives the same answer on the strings ba (which is in No-aba) and aba (which is not in No-aba).
- We can call this an experiment that distinguishes the two strings λ and a.

Clicker Question \#3

- Two strings u and v are defined to be No-aba-distinguishable if there exists a string \mathbf{w} such that exactly one of the strings uw and vw are in No-aba. Which one of these pairs of strings is not No-aba-distinguishable?
- (a) \{aabab, bababa\}
- (b) $\{\lambda$, babbbaab $\}$
- (c) $\{a b b a b b a, a b b\}$
- (d) \{abbabbaaba, babbaa\}

Answer \#3

- Two strings u and v are defined to be No-aba-distinguishable if there exists a string \mathbf{w} such that exactly one of the strings uw and vw are in No-aba. Which one of these pairs of strings is No-aba-distinguishable?
- (a) \{aabab, bababa\} (both already have aba)
- (b) $\{\lambda$, babbbaab $\}$ (append a to each)
- (c) \{abbabba, abb\} (append ba to each)
- (d) \{abbabbaaba, babbaa\} (append λ to each)

Sets of Distinguishable Strings

- Let L be any language. We say that two strings u and v are L-distinguishable (also called \mathbf{L}-inequivalent) if there exists a string w such that $u w \in L$ and $v w \notin L$, or vice versa.
- We call the strings L-equivalent if the negation of this statement is true, that is, if $\forall w: u w \in L \leftrightarrow v w \in L$.

A Lemma on Distinguishability

- Lemma: If M is a DFA with transition function δ, L is any language, u and v are two L-distinguishable strings, and $\delta^{*}(\mathrm{i}, \mathrm{u})=\delta^{*}(\mathrm{i}, \mathrm{v})$, then $L(M) \neq L$.
- Proof: We can prove by induction that if $\delta^{*}(\mathrm{i}, \mathrm{u})=\delta^{*}(\mathrm{i}, \mathrm{v})$, then for any string $\mathrm{w}, \delta^{*}(\mathrm{i}$, $u w)=\delta^{*}(i, v w)$. For the particular w that distinguishes u and v, then, the single state $\delta^{*}(\mathrm{i}, \mathrm{uw})=\delta^{*}(\mathrm{i}, \mathrm{vw})$ needs to be both final and non-final if $L(M)=L$.

A Distinguishability Theorem

- Theorem: If there exists a set of k pairwise L-distinguishable strings, then no DFA that decides L can have fewer than k states.
- Proof: If there are more strings than there are states, by the Pigeonhole Principle there must exist two L-distinguishable strings u and v such that $\delta^{*}(i, u)=\delta^{*}(i, v)$. In this case the Lemma says that the DFA does not decide L.

Languages With No DFA's

- Consider the balanced parenthesis language Paren, which we will write as a subset of $\{\mathrm{L}$, $R\}^{*}$ with L for left parens and R for right parens. We can prove that there is no DFA at all that decides this language.
- Look at the infinite set of strings $\{\lambda, L, L L$, LLL,...\}. I claim that this set is pairwise Parendistinguishable, because if i and j are two naturals with $i \neq j$, then L^{i} and L^{j} are distinguished by R^{i}, since Li R^{i} is in Paren and $L^{\prime} R^{i}$ is not.

Languages With No DFA's

- So for any natural k, we can find more than k pairwise Paren-distinguishable strings, and by our theorem there cannot be a k-state DFA.
- Our real-life algorithm to decide Paren is to remember the number of L's we have seen, minus the number of R's. If this number ends at 0 , without ever going negative, we are in Paren. But this requires more than constant memory -- potentially a state for every natural from 0 through n.

