CMPSCI 250: Introduction to Computation

Lecture \#30: Properties of the Regular Languages
David Mix Barrington
7 April 2014

Properties of Regular Languages

- Induction on Regular Expressions
- The One's Complement Operation
- Proving Our Function Correct
- The Pseudo-Java RegExp Class
- The One's Complement Method
- Reversal of Languages
- Testing for the Empty Language

Induction on Regular Expressions

- Because the regular languages have an inductive definition, we can prove propositions for all of them by induction.
- Let $P(R)$ be a predicate with one free variable of type "regular expression". We can prove that $P(R)$ holds for any regular expression R by proving two base cases and three inductive cases.

Induction on Expressions

- These five cases are:
- $P(\varnothing)$,
- $\mathrm{P}(\mathrm{a})$ for all $\mathrm{a} \in \Sigma$,
- $(P(R) \wedge P(S)) \rightarrow P(R+S)$,
- $(P(R) \wedge P(S)) \rightarrow P(R S)$, and
- $P(R) \rightarrow P\left(R^{*}\right)$

Induction on Expressions

- For example, we will define two operations on languages and show that the regular languages are closed under these operations.
- That is, if R is a regular expression, the result of applying the operation to $L(R)$ gives us another regular language. We'll demonstrate an algorithm to compute this expression.
- We'll also show that we can test properties of R, such as whether $L(R)=\varnothing$.

One's Complement

- The one's complement of a binary string w , denoted oc(w), is the string of the same length obtained by replacing all 0's with I's and all I's with 0's. For example, oc (01IOOI) $=100110$.
- We can define oc(w) inductively, of course:
- $\operatorname{oc}(\lambda)=\lambda$,
- oc $(w 0)=o c(w) I$, and
- oc $(w l)=o c(w) 0$.

One's Complement

- The one's complement of a language X is the language $\{o c(w): w \in X\}$-- the set of strings whose one's complements are in X.
- We will prove that for any regular expression R, the language $o c(L(R))$ is a regular language.
- It's not hard to see how to convert R into a regular expression for oc(L(R)). We just replace 0's with I's and I's with 0's in R itself.

One's Complement

- Formally this is a recursive algorithm:
- oc $(\varnothing)=\varnothing$,
- oc $(0)=1$,
- oc(I) $=0$,
- oc $(R+S)=o c(R)+o c(S)$,
- oc(RS) $=\circ \subset(R) \circ c(S)$, and
- oc($\left.\mathrm{R}^{*}\right)=o c(\mathrm{R})^{*}$.

Proving Our Function Correct

- We will use induction to prove that this function f, from regular expressions to regular expressions, satisfies the property " $L(f(R))=$ oc $(L(R))$ ". We write this property as " $P(R)$ ".
- $P(\varnothing)$ says that $L(\varnothing)=o c(L(\varnothing))$, which is true because $\{o c(w): w \in \varnothing\}=\varnothing$.
- $P(0)$ says " $L(I)=o c(L(0))$ " and $P(I)$ says " $L(0)$ = oc(L(I))", both of which are true.

Proving Our Function Correct

- Assume that $P(R)$ and $P(S)$ are true, so that $L(f(R))=o c(L(R))$ and $L(f(S))=o c(L(S))$.
- We must show that $L(f(R)) \cup L(f(S))=o c(L(R$ $+S)$), that $L(f(R)) L(f(S))=o c(L(R S))$, and that $L(f(R))^{*}=o c\left(L\left(R^{*}\right)\right)$.
- Each of these three facts follow pretty directly from the definitions -- details are in the textbook.

Clicker Question \#|

- Suppose I am formally proving the statement "oc(S + $\mathrm{T})=\mathrm{oc}(\mathrm{S})+\mathrm{oc}(\mathrm{T})$ ". I let w be an arbitrary string. What must I prove about w to complete my proof?
- (a) $w \in o c(S) \vee w \in o c(T) \rightarrow o c(w) \in S+T$
- (b) $w \in o c(S)+o c(T) \leftrightarrow w \in o c(S) \vee w \in o c(T)$
- (c) $(w 0 \in o c(S) \leftrightarrow o c(w) I \in S) \wedge(w I \in o c(S) \leftrightarrow$ $o c(w) 0 \in S)$, and similarly for T
- (d) $w \in o c(S+T) \leftrightarrow w \in o c(S) \vee w \in o c(T)$

Answer \#I

- Suppose I am formally proving the statement "oc(S + $\mathrm{T})=\mathrm{oc}(\mathrm{S})+\mathrm{oc}(\mathrm{T})$ ". I let w be an arbitrary string. What must I prove about w to complete my proof?
- (a) $w \in o c(S) \vee w \in o c(T) \rightarrow o c(w) \in S+T$
- (b) $w \in \operatorname{oc}(S)+o c(T) \leftrightarrow w \in o c(S) \vee w \in o c(T)$
- (c) $(w 0 \in o c(S) \leftrightarrow o c(w) I \in S) \wedge(w I \in o c(S) \leftrightarrow$ $o c(w) 0 \in S)$, and similarly for T
- (d) $w \in o c(S+T) \leftrightarrow w \in o c(S) \vee w \in o c(T)$

A Java RegExp Class

- Just as boolean or arithmetic expressions can be implemented by tree structures, we can define a real Java class RegExp whose objects are regular expressions.
- We will need methods to parse these objects, which means that they must determine their structure and component parts.

A Java RegExp Class

- public class RegExp \{
public RegExp();
// returns RegExp equal to emptyset public RegExp(String w);
// returns RegExp denoted by w public boolean isEmptySet();
// is it the empty set?
public boolean isZero();
// is it "0"?
public boolean isOne();
// is it "1"?
public boolean isUnion();
// is it "S + T"?

A Java RegExp Class

public boolean isCat(); // is it "ST"?

```
public boolean isStar( );
```

 // is it "S*"?
 public RegExp firstArg();
public RegExp secondArg();
public static RegExp
plus (RegExp r, RegExp s);
public static RegExp
cat (RegExp r, RegExp s);
public static RegExp
star (RegExp r);

Computing One's Complement

- This definition lets us write code for the one's complement algorithm. The next slide has a recursive method that creates a RegExp object with the same structure as the method's argument, but with 0's and I's switched.
- We've essentially proved this method correct by our usual method for recursive code -- we prove the base cases correct and then prove the rest correct assuming that the recursive calls are correct.

Computing One's Complement

```
public static RegExp f (RegExp s) {
    if (s.isEmpty( ))
        return new RegExp( );
    if (s.isZero( ))
        return new RegExp("1");
    if (s.isOne( ))
        return new RegExp("0");
    RegExp oct = f (s.firstArg( ));
    if (s.isStar( )) return star(oct);
    RegExp ocu = f (s.secondArg( ));
    is (s.isPlus( ))
        return plus (oct, ocu);
    else return cat (oct, ocu);}
        // s.isCat( ) must be true here
```


Reversal of Languages

- A similar function from languages to languages is reversal, based on the familiar reversal operation on strings: for any language $X, X^{R}=\left\{w^{R}: w \in X\right\}$.
- The regular languages are closed under reversal -- we can easily see that $\varnothing^{R}=\varnothing$ and that $a^{R}=a$ for any letter a. The string rule $(x y)^{R}=y^{R} x^{R}$ yields a language rule $(T U)^{R}=$ $U^{R} T^{R}$, and we have $(T+U)^{R}=T^{R}+U^{R}$ and $\left(T^{*}\right)^{R}=\left(T^{R}\right)^{*}$.

Computing Reversal

```
public static RegExp rev (RegExp s) {
    if (s.isEmpty( )) return new RegExp( );
    if (s.isZero( ))
    return new RegExp("0");
    if (s.isOne( ))
    return new RegExp("1");
    RegExp trev = rev (s.firstArg( ));
    if (s.isStar( )) return star (trev);
    RegExp urev = rev (s.secondArg( ));
    if (s.isPlus( ))
    return plus (trev, urev);
    else return cat (urev, trev);}
        // s.isCat( ) is true in this case
```


Clicker Question \#2

- The code for the method rev contains the line return plus (trev, urev); for the case where s is a union. What would happen if we changed this line to return plus (urev, trev);?
- (a) rev would get caught in an infinite loop
- (b) rev would return the same expression it returned before
- (c) rev would return the calling expression
- (d) the new code would compile but not run

Answer \#2

- The code for the method rev contains the line return plus (trev, urev); for the case where s is a union. What would happen if we changed this line to return plus (urev, trev);?
- (a) rev would get caught in an infinite loop
- (b) rev would return the same expression it returned before
- (c) rev would return the calling expression
- (d) the new code would compile but not run

Testing for the Empty Language

- The regular expression " \varnothing " denotes the empty language, but so do other regular expressions like $a(b+a)^{*}\left(\varnothing+a^{*} \varnothing\right)(b b)^{*}$.
- Exercise 5.5.4 asks you to write a method that takes a RegExp object R and returns a boolean that is true if and only if $L(R)=\varnothing$.

Testing for the Empty Language

- We solve the problem recursively.
- For the base cases, we should return true on \varnothing and return false on any letter a.
- If R and S are two regular expressions, $L(R+$ S) is empty if and only if both $L(R)$ and $L(S)$ are empty, and $L(R S)$ is empty if and only if either $L(R)$ or $L(S)$ is empty.
- And of course $L\left(R^{*}\right)$ is never empty.

Testing Properties of Expressions

- A similar problem is to tell whether $L(R)=$ $\{\lambda\}$, or whether $\lambda \in L(R)$. Each of these may be solved by a recursive algorithm, because we know whether the property holds in the base cases, and how it behaves with respect to the three operations.
- But telling whether $L(R)=\Sigma^{*}$ is much harder, because $L(R+S)$ could equal Σ^{*} in so many different ways.

Clicker Question \#3

- Given a regular expression R over $\{\mathrm{a}, \mathrm{b}\}, \mathrm{I}$ would like to compute whether $a \in L(R)$.
Which of these potential steps in an inductive definition of this property is invalid?
- (a) $a \in S^{*} \leftrightarrow a \in S$
- (b) $(\mathrm{a} \in \mathrm{a}) \wedge \neg(\mathrm{a} \in \mathrm{b}) \wedge \neg(\mathrm{a} \in \varnothing)$
- (c) $(\mathrm{a} \in \mathrm{S}+\mathrm{T}) \leftrightarrow((\mathrm{a} \in \mathrm{S}) \vee(\mathrm{a} \in \mathrm{T}))$
- (d) $(a \in S T) \leftrightarrow((a \in S) \vee(a \in T))$

Answer \#3

- Given a regular expression R over $\{a, b\}, I$ would like to compute whether $a \in L(R)$. Which of these potential steps in an inductive definition of this property is invalid?
- (a) $a \in S^{*} \leftrightarrow a \in S$
- (b) $(\mathrm{a} \in \mathrm{a}) \wedge \neg(\mathrm{a} \in \mathrm{b}) \wedge \neg(\mathrm{a} \in \varnothing)$
- (c) $(\mathrm{a} \in \mathrm{S}+\mathrm{T}) \leftrightarrow((\mathrm{a} \in \mathrm{S}) \vee(\mathrm{a} \in \mathrm{T}))$
- (d) $(a \in S T) \leftrightarrow((a \in S) \vee(a \in T))$ (could be wrong if $S=\varnothing$ or $T=\varnothing$)

