
CMPSCI 250: Introduction to
Computation

Lecture #30: Properties of the Regular Languages
David Mix Barrington
7 April 2014

Properties of Regular Languages

• Induction on Regular Expressions

• The One’s Complement Operation

• Proving Our Function Correct

• The Pseudo-Java RegExp Class

• The One’s Complement Method

• Reversal of Languages

• Testing for the Empty Language

Induction on Regular Expressions

• Because the regular languages have an
inductive definition, we can prove
propositions for all of them by induction.

• Let P(R) be a predicate with one free variable
of type “regular expression”. We can prove
that P(R) holds for any regular expression R
by proving two base cases and three inductive
cases.

Induction on Expressions

• These five cases are:

• P(∅),

• P(a) for all a ∈ Σ,

• (P(R) ∧ P(S)) → P(R + S),

• (P(R) ∧ P(S)) → P(RS), and

• P(R) → P(R*)

Induction on Expressions

• For example, we will define two operations
on languages and show that the regular
languages are closed under these
operations.

• That is, if R is a regular expression, the result
of applying the operation to L(R) gives us
another regular language. We’ll demonstrate
an algorithm to compute this expression.

• We’ll also show that we can test properties
of R, such as whether L(R) = ∅.

One’s Complement

• The one’s complement of a binary string
w, denoted oc(w), is the string of the same
length obtained by replacing all 0’s with 1’s
and all 1’s with 0’s. For example, oc(011001)
= 100110.

• We can define oc(w) inductively, of course:

• oc(λ) = λ,

• oc(w0) = oc(w)1, and

• oc(w1) = oc(w)0.

One’s Complement

• The one’s complement of a language X is the
language {oc(w): w ∈ X} -- the set of strings
whose one’s complements are in X.

• We will prove that for any regular expression
R, the language oc(L(R)) is a regular language.

• It’s not hard to see how to convert R into a
regular expression for oc(L(R)). We just
replace 0’s with 1’s and 1’s with 0’s in R itself.

One’s Complement

• Formally this is a recursive algorithm:

• oc(∅) = ∅,

• oc(0) = 1,

• oc(1) = 0,

• oc(R + S) = oc(R) + oc(S),

• oc(RS) = oc(R)oc(S), and

• oc(R*) = oc(R)*.

Proving Our Function Correct

• We will use induction to prove that this
function f, from regular expressions to regular
expressions, satisfies the property “L(f(R)) =
oc(L(R))”. We write this property as “P(R)”.

• P(∅) says that L(∅) = oc(L(∅)), which is true
because {oc(w): w ∈ ∅} = ∅.

• P(0) says “L(1) = oc(L(0))” and P(1) says “L(0)
= oc(L(1))”, both of which are true.

Proving Our Function Correct

• Assume that P(R) and P(S) are true, so that
L(f(R)) = oc(L(R)) and L(f(S)) = oc(L(S)).

• We must show that L(f(R)) ∪ L(f(S)) = oc(L(R
+S)), that L(f(R))L(f(S)) = oc(L(RS)), and that
L(f(R))* = oc(L(R*)).

• Each of these three facts follow pretty
directly from the definitions -- details are in
the textbook.

Clicker Question #1

• Suppose I am formally proving the statement “oc(S +
T) = oc(S) + oc(T)”. I let w be an arbitrary string.
What must I prove about w to complete my proof?

• (a) w ∈ oc(S) ∨ w ∈ oc(T) → oc(w) ∈ S + T

• (b) w ∈ oc(S) + oc(T) ↔ w ∈ oc(S) ∨ w ∈ oc(T)

• (c) (w0 ∈ oc(S) ↔ oc(w)1 ∈ S) ∧ (w1 ∈ oc(S) ↔

oc(w)0 ∈ S), and similarly for T

• (d) w ∈ oc(S + T) ↔ w ∈ oc(S) ∨ w ∈ oc(T)

Answer #1

• Suppose I am formally proving the statement “oc(S +
T) = oc(S) + oc(T)”. I let w be an arbitrary string.
What must I prove about w to complete my proof?

• (a) w ∈ oc(S) ∨ w ∈ oc(T) → oc(w) ∈ S + T

• (b) w ∈ oc(S) + oc(T) ↔ w ∈ oc(S) ∨ w ∈ oc(T)

• (c) (w0 ∈ oc(S) ↔ oc(w)1 ∈ S) ∧ (w1 ∈ oc(S) ↔

oc(w)0 ∈ S), and similarly for T

• (d) w ∈ oc(S + T) ↔ w ∈ oc(S) ∨ w ∈ oc(T)

A Java RegExp Class

• Just as boolean or arithmetic expressions can
be implemented by tree structures, we can
define a real Java class RegExp whose
objects are regular expressions.

• We will need methods to parse these
objects, which means that they must
determine their structure and component
parts.

A Java RegExp Class
• public class RegExp {

 public RegExp();
 // returns RegExp equal to emptyset
 public RegExp(String w);
 // returns RegExp denoted by w
 public boolean isEmptySet();
 // is it the empty set?
 public boolean isZero();
 // is it “0”?
 public boolean isOne();
 // is it “1”?
 public boolean isUnion();
 // is it “S + T”?

A Java RegExp Class

 public boolean isCat();
 // is it “ST”?
 public boolean isStar();
 // is it “S*”?
 public RegExp firstArg();
 public RegExp secondArg();
 public static RegExp
 plus (RegExp r, RegExp s);
 public static RegExp
 cat (RegExp r, RegExp s);
 public static RegExp
 star (RegExp r);

Computing One’s Complement

• This definition lets us write code for the one’s
complement algorithm. The next slide has a
recursive method that creates a RegExp object
with the same structure as the method’s
argument, but with 0’s and 1’s switched.

• We’ve essentially proved this method correct by
our usual method for recursive code -- we
prove the base cases correct and then prove the
rest correct assuming that the recursive calls are
correct.

Computing One’s Complement
public static RegExp f (RegExp s) {
 if (s.isEmpty())
 return new RegExp();
 if (s.isZero())
 return new RegExp(“1”);
 if (s.isOne())
 return new RegExp(“0”);
 RegExp oct = f (s.firstArg());
 if (s.isStar()) return star(oct);
 RegExp ocu = f (s.secondArg());
 is (s.isPlus())
 return plus (oct, ocu);
 else return cat (oct, ocu);}
 // s.isCat() must be true here

Reversal of Languages

• A similar function from languages to
languages is reversal, based on the familiar
reversal operation on strings: for any language
X, XR = {wR: w ∈ X}.

• The regular languages are closed under
reversal -- we can easily see that ∅R = ∅ and
that aR = a for any letter a. The string rule
(xy)R = yRxR yields a language rule (TU)R =
URTR, and we have (T+U)R = TR + UR and
(T*)R = (TR)*.

Computing Reversal

public static RegExp rev (RegExp s) {
 if (s.isEmpty()) return new RegExp();
 if (s.isZero())
 return new RegExp(“0”);
 if (s.isOne())
 return new RegExp(“1”);
 RegExp trev = rev (s.firstArg());
 if (s.isStar()) return star (trev);
 RegExp urev = rev (s.secondArg());
 if (s.isPlus())
 return plus (trev, urev);
 else return cat (urev, trev);}
 // s.isCat() is true in this case

Clicker Question #2
• The code for the method rev contains the

line return plus (trev, urev); for the
case where s is a union. What would happen
if we changed this line to return plus
(urev, trev);?

• (a) rev would get caught in an infinite loop

• (b) rev would return the same expression it
returned before

• (c) rev would return the calling expression

• (d) the new code would compile but not run

Answer #2
• The code for the method rev contains the

line return plus (trev, urev); for the
case where s is a union. What would happen
if we changed this line to return plus
(urev, trev);?

• (a) rev would get caught in an infinite loop

• (b) rev would return the same expression it
returned before

• (c) rev would return the calling expression

• (d) the new code would compile but not run

Testing for the Empty Language

• The regular expression “∅” denotes the
empty language, but so do other regular
expressions like a(b+a)*(∅ + a*∅)(bb)*.

• Exercise 5.5.4 asks you to write a method
that takes a RegExp object R and returns a
boolean that is true if and only if L(R) = ∅.

Testing for the Empty Language

• We solve the problem recursively.

• For the base cases, we should return true
on ∅ and return false on any letter a.

• If R and S are two regular expressions, L(R +
S) is empty if and only if both L(R) and L(S)
are empty, and L(RS) is empty if and only if
either L(R) or L(S) is empty.

• And of course L(R*) is never empty.

Testing Properties of Expressions

• A similar problem is to tell whether L(R) =
{λ}, or whether λ ∈ L(R). Each of these may
be solved by a recursive algorithm, because
we know whether the property holds in the
base cases, and how it behaves with respect
to the three operations.

• But telling whether L(R) = Σ* is much harder,
because L(R + S) could equal Σ* in so many
different ways.

Clicker Question #3

• Given a regular expression R over {a, b}, I
would like to compute whether a ∈ L(R).
Which of these potential steps in an inductive
definition of this property is invalid?

• (a) a ∈ S* ↔ a ∈ S

• (b) (a ∈ a) ⋀ ¬(a ∈ b) ∧ ¬(a ∈ ∅)

• (c) (a ∈ S + T) ↔ ((a ∈ S) ⋁ (a ∈ T))

• (d) (a ∈ ST) ↔ ((a ∈ S) ∨ (a ∈ T))

Answer #3
• Given a regular expression R over {a, b}, I

would like to compute whether a ∈ L(R).
Which of these potential steps in an inductive
definition of this property is invalid?

• (a) a ∈ S* ↔ a ∈ S

• (b) (a ∈ a) ⋀ ¬(a ∈ b) ∧ ¬(a ∈ ∅)

• (c) (a ∈ S + T) ↔ ((a ∈ S) ⋁ (a ∈ T))

• (d) (a ∈ ST) ↔ ((a ∈ S) ∨ (a ∈ T)) (could be

wrong if S = ∅ or T = ∅)

