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Venn Diagrams

• Here’s a way to describe a group of sets.



Venn Diagrams

• The three large sets each divide 
the type into two groups: the 
elements in it and those not in it.

• This creates 23 = 8 total groups, 
from the three choices.  

• This Venn Diagram has seven 
colored regions, and an eighth 
white region in none of the sets.



Carroll Diagrams

• Lewis Carroll (author of Alice in 
Wonderland) had his own diagrams 
he liked better than Venn’s.

• This diagram represents the four 
combinations of being in set x or 
not, and being in set y or not.  For 
example, region 2 is in y but not in 
x.

• Unlike Venn, he treats the four 
regions equally.



More Carroll Diagrams

• In the top diagram we represent 
three sets, with m the set inside 
the central box.  Region 5 is in m 
and x but not in y. 

• Binary for 5 is 101, with the three 
bits for yes-m, no-y, yes-x.

• The bottom diagram represents 
the 16 regions for four sets.



Set Operations

• We have a number of binary 
operations on sets, that take two 
sets as input and give one set as output.

• If X and Y are sets, their intersection 
X ∩ Y is the set of all elements in both , 
and their union X ∪ Y is the set of all 
elements in either X or Y.

• The relative complement X ∖ Y is 
the set of all elements in X but not in Y.

X ∩ Y

X ∪ Y

Y ∖ X



Two More Set Operations

• The symmetric difference X 
∆ Y is the set of elements that are 
in either X or Y, but not both.

• The complement of X, written 
as X with a line over it, is the set 
of all elements in the universe 
(or data type) that are not in X.

X ∆ Y

X complement



Practice Clicker Question #1

• What set is denoted in green?

• (a) (B ∖ ((A ∪ C) ∪ (A ∩ C))

• (b) ((B ∖ A) ∪ C) ∪ (A ∩ C)

• (c) (B ∖ (A ∩ C)) ∩ (A ∪ C)

• (d) (B ∖ (A ∪ C)) ∪ (A ∩ C)
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Answer #1

• What set is denoted in green?

• (a) (B ∖ ((A ∪ C) ∪ (A ∩ C))

• (b) ((B ∖ A) ∪ C) ∪ (A ∩ C)

• (c) (B ∖ (A ∩ C)) ∩ (A ∪ C)

• (d) (B ∖ (A ∪ C)) ∪ (A ∩ C)
coursecontent.nic.edu



Propositions About Sets

• Given two sets X and Y, we can form the 
propositions X = Y and X ⊆ Y.  We can also use 
the = and ⊆ operators on more complicated 
sets formed with the set operators, for example 
(X ∖ Y) ∩ (Y ∖ X) = ∅.

• This last statement is an example of a set 
identity because it is true no matter what the 
sets X and Y are.  Since every element of X ∖ Y 
is in X, and none of the elements of Y ∖ X are 
in X, no element could be in both.



Membership Statements

• Equality and subset statements about sets are 
actually compound propositions involving 
membership statements for the 
original sets. 

• For example, X = Y means that for any object 
z of the correct type, the propositions z ∈ X 
and z ∈ Y are either both true or both false, 
so that “z ∈ X ↔ z ∈ Y” is true.

• Similarly, X ⊆ Y means that for any z, z ∈ X 
implies z ∈ Y, so we have “z ∈ X → z ∈ Y”.



Set Identities With Set Operators

• A set statement like (X ∖ Y) ∩ (Y ∖ X) = ∅, using 
set operations and the equality or subset 
operator, can be translated into a compound 
proposition.

• We first get [z ∈ (X ∖ Y) ∩ (Y ∖ X)] ↔ z ∈ ∅.  

But the statement on the left of the ↔ can be 

simplified, to z ∈ (X ∖ Y) ∧ z ∈ (Y ∖ X). 

• Using the definition of ∖, this can be further 
simplified to (z ∈ X ∧ ¬ (z ∈ Y)) ^ (z ∈ Y ^ ¬(z ∈ 
X)).



Using Variables for Each Set

• If we define the boolean x to mean z ∈ X and 
the boolean y to mean z ∈ Y, we can rewrite the 
whole statement “[(z ∈ X ∧ ¬ (z ∈ Y)) ^ (z ∈ Y ^ 
¬(z ∈ X))] ↔ (z ∈ ∅)” as (x ∧ ¬y) ∧ (y ∧ ¬x) ↔ 

0, where we use 0 to mean “false”.  

• This compound proposition is a tautology.

• In the same way we can translate any set 
statement, because each set operation 
corresponds exactly to a boolean operation on 
membership statements.



Practice Clicker Question #2

• Let r denote “x ∈ R”, s denote “x ∈ S”, and t 
denote “x ∈ T”.  Which of these membership 
statements is denoted by “t ∧ (s ⊕ (r ∨ t))”?

• (a) x ∈ T ∩ ((S ∆ R) ∪ T)

• (b) x ∈ T ∪ (S ∆ (R ∩ T))

• (c) x ∈ (T ∩ S) ∆ (R ∪ T)

• (d) x ∈ T ∩ (S ∆ (R ∪ T))



Answer #2

• Let r denote “x ∈ R”, s denote “x ∈ S”, and t 
denote “x ∈ T”.  Which of these membership 
statements is denoted by “t ∧ (s ⊕ (r ∨ t))”?

• (a) x ∈ T ∩ ((S ∆ R) ∪ T)

• (b) x ∈ T ∪ (S ∆ (R ∩ T))

• (c) x ∈ (T ∩ S) ∆ (R ∪ T)

• (d) x ∈ T ∩ (S ∆ (R ∪ T))



The Setting for PropCalc Proofs

• The propositional calculus lets us form 
compound propositions from atomic 
propositions, and then ask questions about them.

• Is a given statement P a tautology?  If we know 
that a premise statement P is true, does that 
guarantee that another conclusion statement 
C is also true?  Given two statements P and Q, 
are they equivalent?

• Verifying tautologies solves all three of these 
questions, because they ask whether P, P → C, 
and P ↔ Q respectively are tautologies.



The Bigger Picture

• In this lecture we’ll see how to verify a 
tautology  with a truth table.

• Next week we’ll see how to verify that an 
implication or an equivalence is a tautology 
with a deductive sequence proof or an 
equational sequence proof.

• Sequence proofs can be much shorter than 
the corresponding truth tables, but they 
require creativity to produce.



How to Do a Truth Table Proof

• The idea of a truth table proof is that if we have 
k atomic propositions, there are 2k possible 
settings of the truth values of those 
propositions.  If a given compound proposition is 
true in all of those cases, it is a tautology.

• We need to evaluate the compound proposition 
systematically, in all the cases.  We begin by 
listing the cases, which we can do by counting in 
binary from 0 to 2k - 1, which is from 00...0 to 
11...1.  (This is much less error-prone than trying 
to get all the cases in some arbitrary order.)



How to Do a Truth Table Proof

• The basic idea is that under each symbol of 
the compound proposition, we will have a 
column of  2k  0’s and 1’s to represent the 
values, in each case, of the compound 
proposition associated with that symbol.

• We begin with the occurrences of the 
variables, then calculate new columns in the 
order that operations are used to evaluate 
the compound proposition.



A Truth Table Example

• Let’s take the formula (x ∧ ¬ y) ∧ (y ∧ ¬ x) ↔ 

0.  There are four cases 00, 01, 10, and 11, 
where the first bit is the truth value of x and 
the second that of y. We write the correct 
column under each occurrence of a variable.  
We also write a column of all 0’s under the 
0, since this symbol always has the value 0.

x y | (x ∧ ¬ y) ∧ (y ∧ ¬ x) ↔  0
--------------------------------
0 0    0     0     0     0     0
0 1    0     1     1     0     0
1 0    1     0     0     1     0
1 1    1     1     1     1     0



Continuing The Example

• Next we fill in the columns for the ¬ 
operations:

x y | (x ∧ ¬ y) ∧ (y ∧ ¬ x) ↔  0
--------------------------------
0 0    0   1 0     0   1 0     0
0 1    0   0 1     1   1 0     0
1 0    1   1 0     0   0 1     0
1 1    1   0 1     1   0 1     0



Continuing The Example

• Then the two ∧ operations inside the 
parentheses:

x y | (x ∧ ¬ y) ∧ (y ∧ ¬ x) ↔  0
--------------------------------
0 0    0 0 1 0     0 0 1 0     0
0 1    0 0 0 1     1 1 1 0     0
1 0    1 1 1 0     0 0 0 1     0
1 1    1 0 0 1     1 0 0 1     0



Continuing The Example

• Then the last ∧ operation:

x y | (x ∧ ¬ y) ∧ (y ∧ ¬ x) ↔  0
--------------------------------
0 0    0 0 1 0  0  0 0 1 0     0
0 1    0 0 0 1  0  1 1 1 0     0
1 0    1 1 1 0  0  0 0 0 1     0
1 1    1 0 0 1  0  1 0 0 1     0



Finishing the Example

• And finally the ↔ operation.  Since this final 

column is all 1’s, we have shown that the 
original compound proposition is a tautology.

x y | (x ∧ ¬ y) ∧ (y ∧ ¬ x) ↔  0
--------------------------------
0 0    0 0 1 0  0  0 0 1 0  1  0
0 1    0 0 0 1  0  1 1 1 0  1  0
1 0    1 1 1 0  0  0 0 0 1  1  0
1 1    1 0 0 1  0  1 0 0 1  1  0



Practice Clicker Question #3

• If I construct a truth table for the compound 
proposition “p ∧ (q ∨ r)”, how many ones will 
there be in the column for the final “∧”?

• (a) 3

• (b) 4

• (c) 5

• (d) it depends on whether p, q, and r are true



Answer #3

• If I construct a truth table for the compound 
proposition “p ∧ (q ∨ r)”, how many ones will 
there be in the column for the final “∧”?

• (a) 3

• (b) 4

• (c) 5

• (d) it depends on whether p, q, and r are true



Truth table for Clicker #3

p ∧ (q ∨ r)
-----------
0 0  0 0 0
0 0  0 1 1
0 0  1 1 0
0 0  1 1 1
1 0  0 0 0 
1 1  0 1 1
1 1  1 1 0
1 1  1 1 1



One More Venn Diagram


