CMPSCI 250: Introduction to Computation

Lecture \#3: Set Operations and Truth Table Proofs David Mix Barrington
27 January 2014

Set Operations and Truth Tables

- Venn and Carroll Diagrams
- Set Operations
- Propositions About Sets
- The Setting for Propositional Proofs
- How to Do a Truth Table Proof
- A Truth Table Proof Example

Venn Diagrams

- Here's a way to describe a group of sets.

Venn Diagrams

- The three large sets each divide the type into two groups: the elements in it and those not in it.
- This creates $2^{3}=8$ total groups, from the three choices.
- This Venn Diagram has seven colored regions, and an eighth white region in none of the sets.

Carroll Diagrams

- Lewis Carroll (author of Alice in Wonderland) had his own diagrams he liked better than Venn's.
- This diagram represents the four combinations of being in set x or
 not, and being in set y or not. For example, region 2 is in y but not in x.
- Unlike Venn, he treats the four regions equally.

More Carroll Diagrams

- In the top diagram we represent three sets, with m the set inside the central box. Region 5 is in m and x but not in y.
- Binary for 5 is 101 , with the three bits for yes-m, no-y, yes-x.
- The bottom diagram represents the 16 regions for four sets.

Set Operations

- We have a number of binary operations on sets, that take two
 sets as input and give one set as output.
- If X and Y are sets, their intersection $\mathrm{X} \cap \mathrm{Y}$ is the set of all elements in both, and their union $X \cup Y$ is the set of all
 elements in either X or Y .
- The relative complement $X \backslash Y$ is the set of all elements in X but not in Y .

Two More Set Operations

- The symmetric difference X ΔY is the set of elements that are in either X or Y, but not both.
- The complement of X, written as X with a line over it, is the set of all elements in the universe (or data type) that are not in X. X complement

Practice Clicker Question \#|

- What set is denoted in green?
- (a) $(B \backslash((A \cup C) \cup(A \cap C))$
- (b) $((B \backslash A) \cup C) \cup(A \cap C)$
- (c) $(B \backslash(A \cap C)) \cap(A \cup C)$
- (d) $(B \backslash(A \cup C)) \cup(A \cap C)$

Answer \#I

- What set is denoted in green?
- $(a)(B \backslash((A \cup C) \cup(A \cap C))$
- (b) $((B \backslash A) \cup C) \cup(A \cap C)$
- (c) $(B \backslash(A \cap C)) \cap(A \cup C)$
- (d) $(B \backslash(A \cup C)) \cup(A \cap C)$

Propositions About Sets

- Given two sets X and Y, we can form the propositions $X=Y$ and $X \subseteq Y$. We can also use the $=$ and \subseteq operators on more complicated sets formed with the set operators, for example $(X \backslash Y) \cap(Y \backslash X)=\varnothing$.
- This last statement is an example of a set identity because it is true no matter what the sets X and Y are. Since every element of $X \backslash Y$ is in X, and none of the elements of $Y \backslash X$ are in X, no element could be in both.

Membership Statements

- Equality and subset statements about sets are actually compound propositions involving membership statements for the original sets.
- For example, $X=Y$ means that for any object z of the correct type, the propositions $z \in X$ and $z \in Y$ are either both true or both false, so that " $z \in X \leftrightarrow z \in Y$ " is true.
- Similarly, $X \subseteq Y$ means that for any $z, z \in X$ implies $z \in Y$, so we have " $z \in X \rightarrow z \in Y$ ".

Set Identities With Set Operators

- A set statement like $(X \backslash Y) \cap(Y \backslash X)=\varnothing$, using set operations and the equality or subset operator, can be translated into a compound proposition.
- We first get $[z \in(X \backslash Y) \cap(Y \backslash X)] \leftrightarrow z \in \varnothing$. But the statement on the left of the \leftrightarrow can be simplified, to $z \in(X \backslash Y) \wedge z \in(Y \backslash X)$.
- Using the definition of \backslash, this can be further simplified to $(z \in X \wedge \neg(z \in Y))^{\wedge}\left(z \in Y^{\wedge} \neg(z \in\right.$ X)).

Using Variables for Each Set

- If we define the boolean x to mean $z \in X$ and the boolean y to mean $z \in Y$, we can rewrite the whole statement " $\left[(z \in X \wedge \neg(z \in Y))^{\wedge}\left(z \in Y^{\wedge}\right.\right.$ $\neg(z \in X))] \leftrightarrow(z \in \varnothing) "$ as $(x \wedge \neg y) \wedge(y \wedge \neg x) \leftrightarrow$ 0 , where we use 0 to mean "false".
- This compound proposition is a tautology.
- In the same way we can translate any set statement, because each set operation corresponds exactly to a boolean operation on membership statements.

Practice Clicker Question \#2

- Let r denote " $x \in R$ ", s denote " $x \in S$ ", and t denote " $x \in T$ ". Which of these membership statements is denoted by " $\mathrm{t} \wedge(\mathrm{s} \oplus(\mathrm{r} \vee \mathrm{t})$)"?
- (a) $x \in T \cap((S \Delta R) \cup T)$
- (b) $x \in T \cup(S \Delta(R \cap T))$
- (c) $x \in(T \cap S) \Delta(R \cup T)$
- (d) $x \in T \cap(S \Delta(R \cup T))$

Answer \#2

- Let r denote " $x \in R$ ", s denote " $x \in S$ ", and t denote " $x \in T$ ". Which of these membership statements is denoted by " $\mathrm{t} \wedge(\mathrm{s} \oplus(\mathrm{r} \vee \mathrm{t})$)"?
- (a) $x \in T \cap((S \Delta R) \cup T)$
- (b) $x \in T \cup(S \Delta(R \cap T))$
- $(c) x \in(T \cap S) \Delta(R \cup T)$
- (d) $x \in T \cap(S \Delta(R \cup T))$

The Setting for PropCalc Proofs

- The propositional calculus lets us form compound propositions from atomic propositions, and then ask questions about them.
- Is a given statement P a tautology? If we know that a premise statement P is true, does that guarantee that another conclusion statement C is also true? Given two statements P and Q , are they equivalent?
- Verifying tautologies solves all three of these questions, because they ask whether $\mathrm{P}, \mathrm{P} \rightarrow \mathrm{C}$, and $\mathrm{P} \leftrightarrow \mathrm{Q}$ respectively are tautologies.

The Bigger Picture

- In this lecture we'll see how to verify a tautology with a truth table.
- Next week we'll see how to verify that an implication or an equivalence is a tautology with a deductive sequence proof or an equational sequence proof.
- Sequence proofs can be much shorter than the corresponding truth tables, but they require creativity to produce.

How to Do a Truth Table Proof

- The idea of a truth table proof is that if we have k atomic propositions, there are 2^{k} possible settings of the truth values of those propositions. If a given compound proposition is true in all of those cases, it is a tautology.
- We need to evaluate the compound proposition systematically, in all the cases. We begin by listing the cases, which we can do by counting in binary from 0 to 2^{k} - I, which is from $00 . . .0$ to II...I. (This is much less error-prone than trying to get all the cases in some arbitrary order.)

How to Do a Truth Table Proof

- The basic idea is that under each symbol of the compound proposition, we will have a column of $2^{k} 0$'s and I's to represent the values, in each case, of the compound proposition associated with that symbol.
- We begin with the occurrences of the variables, then calculate new columns in the order that operations are used to evaluate the compound proposition.

A Truth Table Example

- Let's take the formula $(x \wedge \neg y) \wedge(y \wedge \neg x) \leftrightarrow$ 0 . There are four cases $00,01, I 0$, and II, where the first bit is the truth value of x and the second that of y. We write the correct column under each occurrence of a variable. We also write a column of all 0's under the 0 , since this symbol always has the value 0 .

Continuing The Example

- Next we fill in the columns for the $ᄀ$ operations:

Continuing The Example

- Then the two \wedge operations inside the parentheses:

Continuing The Example

- Then the last \wedge operation:

Finishing the Example

- And finally the \leftrightarrow operation. Since this final column is all I's, we have shown that the original compound proposition is a tautology.

Practice Clicker Question \#3

- If I construct a truth table for the compound proposition " $p \wedge(q \vee r)$ ", how many ones will there be in the column for the final " \wedge "?
- (a) 3
- (b) 4
- (c) 5
- (d) it depends on whether p, q, and r are true

Answer \#3

- If I construct a truth table for the compound proposition " $p \wedge(q \vee r)$ ", how many ones will there be in the column for the final " \wedge "?
- (a) 3
- (b) 4
- (c) 5
- (d) it depends on whether p, q, and r are true

Truth table for Clicker \#3

