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Regular Language Identities

• Regular Language Identities 
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• Proving the Distributive Law

• The Inductive Definition of Kleene Star

• Identities Involving Kleene Star

• (ST)*, S*T*, and (S + T)*



Regular Expression Identities

• In this lecture and the next we’ll use our new 
formal definition of the regular languages to 
prove things about them.  

• In particular, in this lecture we’ll prove a 
number of regular language identities, 
which are statements about languages where 
the types of the free variables are “regular 
expression” and which are true for all 
possible values of those free variables.



Regular Expression Identities

• For example, if we view the union operator + 
as “addition” and the concatenation operator 
⋅ as “multiplication”, then the rule S(T + U) = 
ST + SU is a statement about languages and 
(as we’ll prove today) is a regular language 
identity.  In fact it’s a language identity as 
regularity doesn’t matter.

• We can use the inductive definition of regular 
expressions to prove statements about the 
whole family of them -- this will be the 
subject of the next lecture.



The Semiring Axioms Again
• The set of natural numbers, with the ordinary 

operations + and ×, forms an algebraic 
structure called a semiring.  

• Earlier we proved the semiring axioms for 
the naturals from the Peano axioms and our 
inductive definitions of + and ×.  

• It turns out that the languages form a 
semiring under union and concatenation, and 
the regular languages are a subsemiring 
because they are closed under + and ⋅. That 
is, if R and S are regular, so are R + S and R⋅S.



The Semiring Axioms Again

• Both operations of a semiring must be 
associative and each must have an identity.  
For languages, ∅ is the identity for union and 
{λ} = ∅* is the identity for concatenation, as 
∅ + R = R + ∅ = R and R∅* = ∅*R = R.  We 
also need the distributive law which we’ll 
prove soon.  

• Note that + is commutative but ⋅ is not as in 
general XY and YX are different languages.  
There are other identities like X + X = X 
that are not true for the natural numbers.



Clicker Question #1

• Consider the rule “(X + 1)3  = X3 + 3X2 + 3X 
+ 1”, where “1” is the identity of the semiring 
S, and “3” is the element 1 + 1 + I.  Which of 
these statements about this rule is true?

• (a) It is false unless S = {I}.

• (b) It is true only if the semiring obeys the rule 
“XY = YX”.

• (c) It is not valid since cubing is not defined.

• (d) It is true if addition in S is commutative.



Answer #1

• Consider the rule “(X + 1)3  = X3 + 3X2 + 3X 
+ 1”, where “1” is the identity of the semiring 
S, and “3” is the element 1 + 1 + I.  Which of 
these statements about this rule is true?

• (a) It is false unless S = {I}.

• (b) It is true only if the semiring obeys the rule 
“XY = YX”.

• (c) It is not valid since cubing is not defined.

• (d) It is true if addition in S is commutative.



Union and Concatenation

• We’ve already proved everything we need to 
know about identities that just use + for 
languages, since they are set identities for 
the union operator.  

• We know that S + T = T + S, that S + (T + U) 
= (S + T) + U, that S + ∅ = ∅ + S = S, that S 
+ S = S, and that S + Σ* = Σ*.



Union and Concatenation

• We looked at concatenation of languages 
back in Chapter 2.  

• Statements like S(TU) = (ST)U, S∅ = ∅S = ∅, 
and S∅* = ∅*S = S may be proved by the 
equational sequence method.

• To prove “X = Y”, for example, we let w be an 
arbitrary string and prove w ∈ X ↔ w ∈ Y.



Union and Concatenation

• For example, w ∈ (ST)U ↔                              

∃u:∃z:(w = uz) ∧ (u ∈ ST) ∧ (z ∈ U) ↔          

∃x:∃y:∃z:(w = xyz) ∧ (x ∈ S) ∧ (y ∈ T) ∧ (z ∈ U) ↔ 

∃x:∃v:(w = xv) ∧ (x ∈ S) ∧ (v ∈ TU) ↔                  

w ∈ S(TU).  

• At each stage we use the definition of 
concatenation of languages or the associativity of 
concatenation of strings, “x(yz) = (xy)z”, which 
we’ve already proved.



Proving the Distributive Law
• The equational sequence method also works 

to prove S(T + U) = ST + SU, using our 
definitions and some logical rules.

w  ∈ S(T + U) ↔
∃u:∃v:(w = uv) ∧ u ∈ S ∧ v ∈ (T + U) ↔

∃u:∃v: w = uv ∧ u ∈ S ∧ (v ∈ T ∨ v ∈ U) ↔
∃u:∃v: w = uv ∧ [(u ∈ S ∧ v ∈ T) ∨ (u ∈ S ∧ v ∈ U)] ↔

(∃u:∃v: w = uv ∧ u ∈ S ∧ v ∈ T) ∨   
(∃u:∃v: w = uv ∧ u ∈ S ∧ v ∈ U) ↔

w ∈ ST ∨ w ∈ SU ↔
 w ∈ ST + SU 



The Inductive Definition of Star

• To prove identities about the Kleene star 
operation, we use its inductive definition.  

• If A is any language, we define A* by three 
rules: 

• (1) λ ∈ A*, 

• (2) if u ∈ A* and v ∈ A, then uv ∈ A*, and 

• (3) a string is only in A* if it can be proved to 
be so by rules (1) and (2).



The Inductive Definition of Star

• The definition we gave earlier, “w ∈ A* if and 
only if w is the concatenation of zero or more 
strings, each of which is in A” is equivalent.  

• By induction on naturals n, we can prove that 
any concatenation of n strings from A is in A* 
according to the second definition.  

• And we can prove by induction on all strings w 
in A* (according to the second definition) that 
there exists an n such that w is the 
concatenation of n strings from A.



Clicker Question #2

• Let Σ = {a, b, c} and let P(w), for w ∈ Σ*, be “w has an 
equal number of a’s and b’s”.  Let X be the language 
(bcac + ccabc + acbabc)*.  If I want to prove that 
“∀w: (w ∈ X) → P(w)”, what is my inductive step?

• (a) P(X) → (P((bcac)*) ⋀ P((ccabc)*) ⋀ P((acbabc)*))

• (b) P(v) → (P(vab) ⋀ P(vba) ⋀ P(vc))

• (c) P(λ) → (P(bcac) ⋀ P(ccabc) ⋀ P(acbabc))

• (d) P(v) → (P(vbcac) ⋀ P(vccabc) ⋀ P(vacbabc))



Answer #2

• Let Σ = {a, b, c} and let P(w), for w ∈ Σ*, be “w has an 
equal number of a’s and b’s”.  Let X be the language 
(bcac + ccabc + acbabc)*.  If I want to prove that 
“∀w: (w ∈ X) → P(w)”, what is my inductive step?

• (a) P(X) → (P((bcac)*) ⋀ P((ccabc)*) ⋀ P((acbabc)*))

• (b) P(v) → (P(vab) ⋀ P(vba) ⋀ P(vc))

• (c) P(λ) → (P(bcac) ⋀ P(ccabc) ⋀ P(acbabc))

• (d) P(v) → (P(vbcac) ⋀ P(vccabc) ⋀ P(vacbabc))



Structural Induction

• This is an example of a general phenomenon 
-- any of our structural inductions on 
the definition of a class could be rephrased as 
inductions on the naturals.

• Rather than proving P(w) for all strings w, for 
example, we could let Q(n) mean “P(w) for all 
w of length n” and then prove Q(n) for all 
naturals n.  The proof of Q(n) → Q(n+1) 
would essentially be the same as the proof of 
P(w) → P(wa).



Identities for Kleene Star

• The statement “(u ∈ A* ∧ v ∈ A*) → uv ∈ A*”, 
or “A* is closed under concatenation”, is not 
part of the definition of Kleene star.  

• It looks very much like our rule (2) which 
says “(u ∈ A* ∧ v ∈ A) → uv ∈ A*”, but it 
requires a proof.

• Let’s prove this closure rule by induction on 
all strings v in A*. 



A* Closed Under Concatenation

• Our statement P(v) is “u ∈ A* → uv ∈ A*”, 
where we have let u be arbitrary.

•  The base case is v = λ, and it is clear that if u 
∈ A* and v = λ, then uv ∈ A* since uv = u. 

• For the induction, assume that v = wx, that w 
∈ A*, that x ∈ A, and that we already know 
P(w), which says that u ∈ A* → uw ∈ A*. 



A* Closed Under Concatenation

• Now to prove P(v), we assume u ∈ A*, derive 
uw ∈ A* from the IH, and derive that uv = 
uwx is in A*.  

• This follows from rule (2), because uw ∈ A* 
and x ∈ A.

• This should remind you of the proof that the 
path relation on graphs is transitive, using the 
inductive definition of paths.



(ST)*, S*T*, and (S + T)*

• It is generally much easier to prove subset 
relationships that set equalities from the 
Kleene star definition.  

• The equality identities that are true, like (S*)* 
= S*, are most easily proved by showing both  
directions, here (S*)* ⊆ S* and S* ⊆ (S*)*.  

• These in turn follow from the identities T ⊆ 
T* and (S ⊆ T) → (S* ⊆ T*).  Both of these in 
turn follow from (S ⊆ T*) → (S* ⊆ T*).



(ST)*, S*T*, and (S + T)*

• How shall we prove that S ⊆ T* → S* ⊆ T*?

• We’ll assume S ⊆ T*, let P(w) be “w ∈ T*”, and 
prove P(w) for all w in S*.  

• For the base case, w = λ and we know λ ∈ T*.  

• For the induction, assume w = xy with P(x) 
true and y ∈ S.  So X ∈ T* by the IH, y ∈ T* 
because S ⊆ T*, and then w = xy is in T* by 
the closure of T* under concatenation.



(ST)*, S*T*, and (S + T)*

• We have seen that parentheses matter, so 
that (ST)* and S*T* are two different 
languages for most choices of S and T.  

• (We saw that (ab)* ≠ a*b*, for example.)  

• But we can prove that both (ST)* and S*T* are 
contained in (S + T)*, using the identities 
above.



Clicker Question #3

• Let S and T be any regular expressions.  
Which of these statements is guaranteed to 
be true?

• (a) T + S* + (STS)* ⊆ (S + T)*

• (b) (TS)* ⊆ T(ST)*S

• (c) (T* + S*)* ⊆ S* + T*

• (d) ((T + S)(S + T))* = (S + T)*(T + S)*



Answer #3

• Let S and T be any regular expressions.  
Which of these statements is guaranteed to 
be true?

• (a) T + S* + (STS)* ⊆ (S + T)*

• (b) (TS)* ⊆ T(ST)*S (∅* is on left, not on right)

• (c) (T* + S*)* ⊆ S* + T* (ST is counterexample)

• (d) ((T + S)(S + T))* = (S + T)*(T + S)* (things 
in the left set must use an even number of S, T)


