CMPSCI 250: Introduction to Computation

Lecture \#27: Games and Adversary Search David Mix Barrington
31 March 2014

Games and Adversary Search

- Review: A* Search
- Modeling Two-Player Games
- When There is a Game Tree
- The Determinacy Theorem
- Searching a Game Tree
- Examples of Games

Review: A* Search

- The A* Search depends on a heuristic function, which is a lower bound on the distance to the goal.
- If x is a node, and g is the nearest goal node to x, the admissibility condition on h is that $0 \leq h(x) \leq d(x, g)$.

$P(y)=23+2+6=31$ $p(z)=23+4+3=30$

Review: A* Search

- Suppose we have taken y off of the open list. The best-path distance from the start s to the goal g through y is $d(s, y)+d(y$, $g)$, and this cannot be less than $d(s, y)+h(y)$.
- Thus when we find a path of length k from s to y, we put y
 onto the open list with priority k $+h(y)$. We still record the

$$
p(y)=23+2+6=31
$$ distance $d(s, y)$ when we take y off of the open list.

Review: A* Search

- The advantage of A^{*} over uniformcost search is that we do not consider entries x in the closed list for which $d(s, x)+h(x)$ is greater than the actual best-path distance from s to g.
- This is because when we find the best path to g with length $d(s, g)$,
 we will put g on the open list with priority $\mathrm{d}(\mathrm{s}, \mathrm{g})+\mathrm{h}(\mathrm{g})=\mathrm{d}(\mathrm{s}$,

$$
p(y)=23+2+6=31
$$

g) and it will come off before any node with higher priority value.

The I5 Puzzle

- The 15 -puzzle is a 4×4 grid of pieces with one missing, and the goal is to put them in a certain arrangement by repeatedly sliding a piece into the hole.
- We can imagine a graph where nodes are positions and edges represent legal moves.

The I5 Puzzle

- In order to move from a given position to the goal, each piece must move at least the Manhattan distance from its current position to its goal position.
- The sum of all these Manhattan distances gives us an admissible,

Figure from "Fifteen puzzle" consistent heuristic for the actual minimum number of moves to reach the goal. So an A^{*} search will be faster than a uniform-cost search.

Clicker Question \#|

- Suppose we do a uniform-cost search of the directed graph where nodes are 15 -puzzle positions and there is a directed edge labeled " I " for every legal move. Which is not true?
- (a) This is the same as A^{*} with $h(x)=0$ always.
- (b) This is the same as DFS of the unlabeled graph.
- (c) This is the same as BFS of the unlabeled graph.
- (d) We'd do better with A^{*} and a heuristic that counted the tiles that were out of place.

Answer \#I

- Suppose we do a uniform-cost search of the directed graph where nodes are 15 -puzzle positions and there is a directed edge labeled "I" for every legal move. Which is not true?
- (a) This is the same as A^{*} with $h(x)=0$ always.
- (b) This is the same as DFS of the unlabeled graph.
- (c) This is the same as BFS of the unlabeled graph.
- (d) We'd do better with A^{*} and a heuristic that counted the tiles that were out of place.

Modeling Two-Player Games

- There are many kinds of games, and we are now going to look at a theory which will let us model and analyze some of them.
- You probably know that the game of tic-tac-toe is not very interesting to play, because if both players are familiar with the game the result is always a draw.
- There is a strategy for the first player, X , that allows her to always win or draw. There is also a strategy for O, the second player, letting him win or draw. If both players play these strategies, there is a draw.

Modeling Two-Player Games

- Any game that shares certain particular features of tic-tac-toe is determined in the same way.
- We must have sequential moves, two players, a deterministic game with no randomness, a zero-sum game, and perfect information.
- In these cases we can model the game by a game tree.

Game Trees

- A game tree has a node for every possible state or position of the game. The root node represents the start position.
- A node y is a child of a node x if it is possible, according
 to the rules of the game, to get to y from x in one move.

Game Trees

- Every node is labelled by whose turn it is.
- Usually the two players alternate moves, so we can call them the first and second player (White and Black), but our analysis will
 not change if one player can make several moves in a row.

Game Trees

- The leaves of the tree represent positions where the result of the game is known.
- We label leaves with a real number indicating how much White is paid by Black, typically I for a White win, 0 for a draw, and -I for a Black
 win, but any real number values are possible.

Clicker Question \#2

- Who wins the game represented to the right, if Black plays optimally?
- (a) White can win if and only if she first moves left.
- (b) White can win if and only if she first moves right.
- (c) White can win with either first move.
- (d) Black always wins.

Answer \#2

- Who wins the game represented to the right, if Black plays optimally?
- (a) White can win if and only if she first moves left.
- (b) White can win if and only if she first moves right.
- (c) White can win with either first move.
- (d) Black always wins.

When We Have a Game Tree

- To be represented by such a tree the game must be discrete, deterministic, zerosum, and have perfect information.
- The tree is finite if there are only finitely many sequences of moves that can ever occur. We could have a finite game graph where nodes can be reached in more than one way or even revisited, but we won't analyze these here.

The Determinacy Theorem

- Each leaf has a game value, the real number we defined above. We can inductively assign a game value to every node of the tree, by the following rules.
- The value val(s) of a final position is its label.
- If White is to move in position $\mathrm{s}, \operatorname{val}(\mathrm{s})$ is the maximum value of any child of s.
- If Black is to move in position s , val(s) is the minimum value of any child of s.

The Determinacy Theorem

- The Determinacy Theorem says that:
- (I) any game given by a finite tree has a game value v (the value of the root given by the definition above),
- (2) White has a strategy that guarantees her a result of at least v , and
- (3) Black has a strategy that guarantees him that the result will be at most v . Thus v is the result if both players play optimally.

Proving Determinacy

- We prove that for each node x in the tree, each player has a strategy that gets them either a result of $\operatorname{val}(x)$ or a result that is even better for them.
- If x is a leaf of the tree this is obvious.
- If it is White's move she can move to the child with value val(x), and by the IH get at least this result.
- It's just the same if Black is to move.

Clicker Question \#3

- What is the value of the game represented to the right?
- (a) -2
- (b) 0
- (c) 3

- (d) 7

Answer \#3

- What is the value of the game represented to the right?
- (a) -2
- (b) 0
- (c) 3

- (d) 7

Winning Tic-Tac-Toe

COMPLETE MAP OF OOTMAL TC-TC-TCE MOVES

- The chart to the right, if it were big enough to read, would tell you complete strategies for each player guaranteeing a result of 0 (a draw) or better.

Winning Tic-Tac-Toe

- The X strategy starts with moving to the top left, then has a reply to each of the eight O moves that could follow, then a reply to each of the six possible O responses to that move, and so on.
- The desired moves are in red.

Winning Tic-Tac-Toe

- The O strategy must have responses to all nine initial X moves, then to all seven X responses to each of those moves, and so on.
- The messiest parts of the chart is where the game goes for all nine moves, since each board is I/9 the area of the last.

Searching a Game Tree

- The Determinacy Theorem only tells us that these optimal strategies exist, not that they are possible to implement.
- If it is possible to calculate the game value of any node, then choosing the right move is easy. And we have a recursive algorithm to compute the game value, so what is the problem?
- The tree could be really really big.

Adversary Search

- An exhaustive adversary search computes the exact value.
- If we can't do that, we need an estimate of the game value.
- In Chess, for example, we can evaluate material and some positional facts to get a good idea whether one position is better than another.

Adversary Search

- We can then use finite lookahead, playing a game that ends in k moves, where the payoff is the estimated value of the position at the end of those k moves.
- Alpha-beta pruning, which we won't do in this course, is a way to improve the search. But the required time is still usually exponential in the number of moves to go.

Examples of Games

- In I965, my father's M.S. thesis was to build a tic-tac-toe program that learned from its mistakes.
- By 1992, and probably earlier, students in CMPSCI I87 could build a winning program that exhaustively searched the game tree on every move.

xkcd.com/1002

Examples of Games

- There is either a winning strategy for White in Chess, or a drawing strategy for Black. But no one knows which is true.
- Current Chess programs succeed by doing a better job of searching and evaluating positions.

xkcd.com/1002

Examples of Games

- Computers don't approach chess the way good human players do. We can use games as benchmarks for Al achievement.
- Checkers is easier than Chess, and Go is harder.
- Calvinball (from Calvin and Hobbes) allows rules to be changed at will.

xkcd.com/1002

