CMPSCI 250: Introduction to Computation

Lecture \#25: DFS and BFS on Graphs David Mix Barrington
26 March 2014

DFS and BFS on Graphs

- Storing the Entire Search Space
- The DFS Tree of a Undirected Graph
- The DFS Tree of a Directed Graph
- Four Kinds of Edges
- The BFS Tree of a Undirected Graph
- The BFS Tree of a Directed Graph

Storing the Entire Search Space

- In CMPSCI 3II you'll spend considerable time on search problems where the entire graph is given to you, usually as an adjacency list where for each node we have a list of the edges out of it.
- Given two nodes s and t in the graph, we can ask whether there is a path from s to t, how long the shortest path from s to t might be (measured by number of edges or measured by the total cost of the edges), or whether s and t remain connected if certain edges are deleted.

Storing the Entire Search Space

- With the whole graph stored (or using a closed list to remember what we've seen), we avoid processing the same node twice.
- Both DFS and BFS on graphs will allow us to create a tree from the graph, which will allow us to address these various problems more easily.

DFS Trees of Undirected Graphs

- Recall that our DFS algorithm places nodes onto a stack when they are discovered, and processes all their edges when they are taken off the stack.
- Our DFS tree will have a tree edge from s to t if we encounter t for the first time while we are processing s, that is, if we discover t through its edge from s. The tree edges form a tree that gives a path from the start node to each node that is reachable from it.

DFS Trees of Undirected Graphs

- If we defined the DFS recursively, the DFS tree would be essentially the call tree, because if (s, t) were a tree edge we would make the recursive call with parameter t in the course of processing the call with parameter s.
- A DFS of an undirected graph searches the entire connected component of the start node. What can we tell about the edges that aren't tree edges?

Tree Edges and Back Edges

- Let G be a connected undirected graph and let T be its DFS tree.
- If G were a graph-theoretic
 tree, T and G would be the same graph (more precisely, T would be the rooted tree made from G with the start node as root).

Tree Edges and Back Edges

- But if while processing node s, we find an edge to a node t that is not new, that edge does not go into T . (We'll ignore the reverse directions of tree edges.)
- Note that the processing of t must still be going on at this point, because we don't finish processing t until we've finished all the nodes reachable from it, including s. So t must be an ancestor of s in the tree, and the edge (s, t) is thus called a back edge.

Tree Edges and Back Edges

- Here's an example where the undirected graph G becomes a rooted tree T together with some back edges.

- An articulation point is a node whose removal disconnects the graph. Can you tell what condition on the tree and back edges makes t such a point?

Clicker Question \#I

- What are the articulation points of this undirected graph?
- (a) there aren't any
- (b) every node except G
- (c) E only
- (d) B and E only

Answer \#I

- What are the articulation points of this undirected graph?

- (a) there aren't any
- (b) every node except G
- (c) E only
- (d) B and E only

DFS and Articulation Points

- In this graph, E is the only articulation point.
- Every other node X in the DFS tree (except the root A) has this property: each child of X has a descendant with a back edge to a proper ancestor of X.
- The root is an articulation point if it has $>$ I child.

DFS Trees of Directed Graphs

- When we make a DFS of a directed graph, we still reach every node that is reachable from the start node.
- But it's no longer guaranteed that any or all of those nodes have paths back to the start point -- we no longer necessarily have a
 connected component to search.

Strongly Connected Components

- Problem 9.6.2 (on HW\#4 this term) has you work out how to use the DFS algorithm to find the strongly connected components of a directed graph -- the equivalence classes of the equivalence relation $P(x, y) \wedge P(y, x)$.
- If there is a back edge from a node t to an ancestor u, then all the nodes on the tree path from u down to t are in the same strongly connected component because they lie on a directed cycle.

DFS of a Directed Graph

- In a directed graph we can no longer guarantee that all the edges are either tree edges or back edges -- what are the other possibilities?
- Let (u, v) be an arbitrary edge in a directed graph G. In what different ways could (u,v) be encountered in a DFS of G?

Tree and Forward Edges

- If we find u before v and first find v through the edge (u, v), it is a tree edge.

- If we find u before v, but find v through one of its siblings before we look at the edge (u, v), then (u, v) becomes a forward edge from u to a descendant.

B

Back and Cross Edges

- If we find v before u, and find u while we are still processing v, then the edge (u, v) becomes a back edge just as in the undirected case.
- If we find v before u and finish v before finding u (because there is no path from v to u), then (u, v) becomes a cross edge.

B

Clicker Question \#2

- What type of edge will the green edge become, if we do a DFS from D and always take neighbors alphabetically?

- (a) tree edge
- (b) forward edge
- (c) back edge
- (d) cross edge

Answer \#2

- What type of edge will the green edge become, if we do a DFS from D and always take neighbors alphabetically?
- (a) tree edge
- (b) forward edge
- (c) back edge
- (d) cross edge

BFS Trees of Undirected Graphs

- A breadth-first search gives rise to tree edges in the same way -- (u, v) is a tree edge if we encounter v during the processing of u, and put v on the queue.
- The BFS tree is made up of all the tree edges, and is a rooted tree giving a shortest path (in number of edges) from the start node to each edge.
- If there are multiple shortest paths, the algorithm will choose one as the tree path.

BFS Trees of Undirected Graphs

- If u is at level k of the tree, and (u, v) is a nontree edge, we know that v has already been put on the queue before the edge is seen.
- If it is still on the queue, it must be also at level k .
- If it has been finished, it must be at level $\mathrm{k}-\mathrm{I}$, because otherwise (in an undirected graph) we would have missed a shorter path from the start node to u by way of v.

Bipartite Graphs

- An undirected graph is bipartite if and only if we never get an edge from one node to another at the same level.
- This follows from the theorem that an undirected graph is bipartite if and only if it has no odd-length cycles.)

Clicker Question \#3

- Let G be a connected undirected graph. Three of these conditions on G are equivalent -- which one is different from the others?
- (a) If x and y are nodes, the paths from x to y are either all even length or all odd length.
- (b) G has no odd-length cycles (i.e., no cycles of length $3,5,7$, etc.).
- (c) The nodes of G can be two-colored so that no edge has two endpoints of the same color.
- (d) G has an even-length cycle.

Clicker Question \#3

- Let G be a connected undirected graph. Three of these conditions on G are equivalent -- which one is different from the others?
- (a) If x and y are nodes, the paths from x to y are either all even length or all odd length.
- (b) G has no odd-length cycles (i.e., no cycles of length $3,5,7$, etc.).
- (c) The nodes of G can be two-colored so that no edge has two endpoints of the same color.
- (d) G has an even-length cycle.

BFS Trees of Directed Graphs

- In a BFS of a directed graph, the BFS tree will arrange the nodes into levels, based on their shortest-path distance from the start node (where again "shortest" means "fewest edges").
- If u is at level k and we find v for the first time while processing u, then (u, v) will be a tree edge and v will be at level $k+l$.

BFS Trees of Directed Graphs

- But if v has already been seen, it might be at any existing level of the tree from 0 to k or even $k+I$, or might even not be in the tree at all!
- Remember that if a DFS or BFS finishes without reaching all the nodes, we start a new tree at a new start point. The node v might be in an earlier tree (which didn't contain a path to u), but still have an edge from u.

