
CMPSCI 250: Introduction to
Computation

Lecture #24: General Search, DFS, and BFS
David Mix Barrington
24 March 2014

General Search, DFS, and BFS

• Four Examples of Search Problems

• State Spaces, Search, and Optimization

• The Generic Search Algorithm

• When Do We Know That Generic Search
Works?

• Depth-First Search

• Breadth-First Search

• Iterative Deepening Depth-First Search

Examples of Search Problems

• Many computational problems are searches
over some state space.

• A navigation program is given a start
location and an end location, and has a
database of information about streets.

• It should not only find a path from start to
finish, but the best path in terms of distance
or driving time.

Examples of Search Problems

• A sudoku puzzle is a 9 × 9
grid where each square is to
be filled with a number from
1 through 9.

• Some of the numbers are
initially filled in, and the goal is
to fill in the rest while
obeying certain rules.

Examples of Search Problems

• The eight queens puzzle is
to place eight chess queens on
an 8 × 8 board so that no queen
attacks another horizontally,
vertically, or diagonally.

• The Rubik’s cube can be
placed in any of about 4.3 × 1019
different positions, and the goal
is to return it to the start
position by making legal moves.

State Spaces and Organization

• In each of these problems there is a set of
possible states we may be in, and a set of
legal moves among those states.

• The search problem is to find a path from
one state to another if there is one, and the
optimization problem is to find the
cheapest path (or sometimes the cheapest
state) according to some cost measure.

State Spaces and Organization

• At least conceptually, we can represent the
state space and moves as a directed
graph, with states as the nodes and directed
edges for the moves.

• But it may not be possible to store the entire
graph in a computer at one time. We say that
the graph is implicitly represented if we
can remember any given state and can
calculate the possible moves out of it.

State Spaces and Organization

• How we define the state space
can have an enormous impact on
the difficulty of the problem.

• In the eight queens problem,
there are over 4 billion ways to
place eight queens on 64 spaces,
but only 40320 that have one
queen per row and one per
column.

The Generic Search Algorithm

• We can define a generic search
algorithm for any state space and set of
moves. It is underspecified in that we
won’t always say what will happen, but only
what might happen.

• The key data structure is the open list,
which is a set of states that still need their
neighbors to be searched. We are looking for
a path from the start node s0 to any state in a
given set of goal states.

Pseudocode for Generic Search

open list = {s0};
while (open list is not empty) {
 s = a state taken from the open list;
 if (s is a goal state) declare
 victory;
 else for (each neighbor n of s)
 add n to the open list;
 remove s from the open list;}
declare defeat;

Does Generic Search Work?

• We would like our search to declare victory
whenever a path exists from s0 to any goal
state, and to declare defeat whenever no such
path exists.

• When can we count on this? Here are four
lemmas, proved carefully in the text.

• Lemma 1: If the search declares victory, we
can prove by induction that a path exists.

Clicker Question #1
• I want to prove that if state q is ever put on the

open list during a generic search, there is a path
from s0 to q. What is my strong inductive step?

• (a) If q is on the list because q = s0, then there is
the empty path from s0 to itself.

• (b) If q is on the list, it has an edge from some r.

• (c) If every node already put on the list has a path
from s0, then so does q, a new node on the list.

• (d) If the list never has any nodes, they all have
paths from s0.

Answer #1
• I want to prove that if state q is ever put on the

open list during a generic search, there is a path
from s0 to q. What is my strong inductive step?

• (a) If q is on the list because q = s0, then there is
the empty path from s0 to itself.

• (b) If q is on the list, it has an edge from some r.

• (c) If every node already put on the list has a path
from s0, then so does q, a new node on the list.

• (d) If the list never has any nodes, they all have
paths from s0.

Does Generic Search Work?

• Lemma 2: If the search declares defeat, we
can prove that there is no such path. (We
use the contrapositive method -- if a path
exists we won’t declare defeat before we find
it.)

• Lemma 3: If a path exists, and every state
added to the open list is eventually removed
from it, the search will eventually terminate
and declare victory.

Does Generic Search Work?

• Lemma 4: If no path exists, and there are
only finitely many states in the search space,
and each state enters the open list only
finitely many times, then the search will
eventually terminate and declare defeat.

• Both conditions of Lemma 4 are necessary. If
either fails to hold, we could fail to terminate
in a case with no path.

Clicker Question #2
• Suppose there is no finite path from s0 to the

goal node g. Three of these conditions could
cause a generic search to run forever without
declaring defeat. Which one could not?

• (a) A state s goes on and off the list infinitely
many times.

• (b) The search ends as the open list is empty.

• (c) Some state s is placed on the list and stays
there forever.

• (d) Infinitely many states are available to the list.

Answer #2
• Suppose there is no finite path from s0 to the

goal node g. Three of these conditions could
cause a generic search to run forever without
declaring defeat. Which one could not?

• (a) A state s goes on and off the list infinitely
many times.

• (b) The search ends as the open list is empty.

• (c) Some state s is placed on the list and stays
there forever.

• (d) Infinitely many states are available to the list.

Polynomial, Exponential Search

• A search algorithm that will eventually find a
path to its goal is not much use if it takes too
long to do so. We’d like to be able to
estimate the number of steps we will need.

• But we may not even know the size of the
state space if it is implicitly represented.
(Sometimes we just have an upper bound on
it.)

Polynomial, Exponential Search

• Mathematical analysis of running times is
usually for parametrized problems, where
there is some size factor n, like the size of the
space or the maximum length of paths that
interest us.

• We define a function T(n), so that T(n) is the
maximum (or worst-case) running time
taken on any input of size n.

Polynomial, Exponential Search

• A key distinction is between time functions
that are polynomial in n, such as n2 or n10,
and functions that are exponential in n
such as 2n. The latter are much worse and
usually become prohibitive for even very
small n.

• Exhaustive search of all paths is usually
exponential -- if each state has d neighbors
there are about dn paths of length n.

Depth-First Search

• Our generic algorithm didn’t specify which
state we take off the open list when we need
a new one.

• We could always take off the one that was
most recently put on, making the open list a
Last-In-First-Out structure or a stack.

• This is the defining feature of depth-first
search.

Depth-First Search

• Another issue is whether we can recognize
states that we have already explored when
we see them again.

• If we can store the whole graph we can just
mark these nodes, and if not we could
possibly keep a closed list. But in general
space is more expensive than time when we
search huge spaces.

Depth-First Search

• Depth-first search is greedy in that it
explores all the consequences of its first
choice before considering alternatives to it.

• If our search is totally blind, we could even
get stuck in an infinite cycle and never
complete the search.

• In a directed acyclic graph we are at
least guaranteed to finish the search.

A Depth-First Search Example

• Consider a Manhattan grid
where we start at the
southwest corner and edges
are directed north and east.
Let’s look at what happens if
our state space is the points
whose “Manhattan distance”
from the start is at most 4,
and there are no goal nodes.
(This is the worst case for
the time of a search.)

Clicker Question #3

• What is the best-path
distance from the red node
to the blue node?

• (a) undefined

• (b) 3

• (c) 2

• (d) √5

Answer #3

• What is the best-path
distance from the red node
to the blue node?

• (a) undefined

• (b) 3

• (c) 2

• (d) √5

A Depth-First Search Example

• We begin by putting (1, 0),
(2, 0), (3, 0), and (4, 0) on the
stack. We pop (4, 0) off as it
has no neighbors, and return
to (3, 0) to check (3, 1).

• When that fails we return to
(2, 0) to check (2, 1), which
runs searches of (3, 1) and
(2, 2) -- it doesn’t know that
it has already checked (3, 1).

A Depth-First Search Example

• Finally we return to (1, 0), search
(1, 1) and its descendants, return
to (0, 0), and search (0, 1) and all
of its descendants.

• We searched each of the 24 =
16 paths even though there
were only five nodes with no
descendants. If we don’t notice
previously seen nodes, we will
search 2n paths if we search the
grid up to distance n.

Breadth-First Search

• The other natural way to manage the open
list is with a First-In-First-Out
structure, or a queue. This has a number of
advantages.

• We will find a path if one exists, as long as
each node has only finitely many neighbors.

• This is because we put all nodes at distance 1
on the queue, then distance 2, then distance
3, and so on.

Breadth-First Search

• Once we reach the distance of the nearest
goal node, we will look at all nodes at that
distance and thus find that goal node.

• Thus we find the shortest path, in terms of
number of edges.

• But if different edges have different costs, this
may not be the cheapest path.

Comparing DFS and BFS
• Depth-first search might be much faster if its

greedy search succeeds immediately -- breadth-
first search must check all paths shorter than
the right one.

• BFS also uses much more memory in general,
as all the nodes at a given distance are stored
on the queue at once.

• Without recognizing already-seen nodes, BFS
and DFS take about the same time on our
example. This is because they put a node on
the open list once for each path to it.

Iterative Deepening DFS

• When we can’t recognize already-seen
nodes, a hybrid approach between DFS and
BFS, called iterative deepening DFS, can
combine the advantages of both.

• The idea is to carry out a DFS but truncate
it at distance 1. If that fails, DFS again
truncating to distance 2, then distance 3, and
so on. Like BFS, this is guaranteed to find a
shortest path in terms of number of edges.

Iterative Deepening DFS

• We only need to keep a stack rather than a queue.
If the graph has degree d, the stack for the distance-
k DFS will have at most k nodes on it, while the
queue for the corresponding BFS might have as
many as dn nodes on it.

• We appear to be wasting time by doing all the
shorter searches before we discover the right
distance. But since these searches get exponentially
longer with k, the distance-k one takes more time
than all the others put together. So we waste only a
small fraction of the time for the right search.

