
CMPSCI 250: Introduction to
Computation

Lecture #23: Recursion on Trees
David Mix Barrington
14 March 2014

Recursion on Trees

• Trees to Represent Expressions

• A Recursive Definition of Expression Trees

• Types of Expressions

• Prefix, Infix, and Postfix Strings for
Expressions

• Parsing and Evaluating Expressions

• The Definition of Truth

• Call Trees for Algorithms

A Recursive Tree Definition

• (Note: Five slides repeated from Lecture #22)

• A single node, with no edges, is a rooted tree
and the node is its root.

• We can make a rooted tree out of one or
more existing rooted trees plus a new node
x. The root of the new tree is x, and we add
edges from x to the roots of each of the
existing trees.

• The only possible rooted trees are those
made by the two rules above.

Induction on Rooted Trees

• This is a recursive definition of rooted trees.

• As with our other recursively defined types,
we now have a new Law of Mathematical
Induction for rooted trees.

• If we prove P(T) whenever T has only one
node, and that P(T) is true when T is made
from subtrees U1, U2,..., Uk and P(Ui) is true
for all i, then we may conclude that P(T) is
true for any rooted tree T.

A Theorem About Rooted Trees

• Let’s use this induction rule to prove a
theorem.

• Theorem: If T is any rooted tree with n
nodes and e edges, then e = n - 1.

• Base Case: If T is a one-node tree, then e = 0
and n = 1 so e = n - 1 is true.

• Now we have to set up the inductive step.

A Theorem About Rooted Trees

• Inductive Step: Let T be made by the second
rule from U1, U2,..., Uk and say that each of
the Ui’s has ni nodes and ei edges, so that ei =
ni - 1 by the IH.

• T has all the nodes and edges from all the
subtrees, plus one new node (its root) and k
new edges (one from its root to each of the
existing roots).

A Theorem About Rooted Trees

• So n, the number of nodes in T, is the sum of
the ni’s plus 1.

• And e, the number of edges in T, is the sum of
the ei’s plus k.

• The sum S of the ei’s is the sum of the ni’s
minus k, so e = S + k and n = (S + k) + 1, and
therefore = n - 1.

• We’ve completed the inductive step and thus
proved our P(T) for all rooted trees T.

Trees to Represent Expressions

• Trees are useful for
representing collections of
objects in a hierarchical
structure, where every object
except one has a unique
“parent” object.

• We’ve mentioned people in
an organization, classes in an
inheritance hierarchy, and files
in a directory/folder system.

Object

TerrierGolden

Dog

FoxTerrier CairnTerrier

Trees to Represent Expressions

• Expressions are collections of atomic
values connected by operators.

• We’ve seen boolean expressions in the
first part of the course, and we’ll see them
again in Discussion #7 a week from Monday.

• There are also arithmetic expressions
as in Java.

• Even whole programs can be thought of as
expressions.

Trees to Represent Expressions

• Operators can be unary, meaning that they
take one argument (like ¬ or -) or binary,
meaning that they take two (like ⋀, ⋁, +, or
×). In general we could also have ternary, 4-
ary, or k-ary operators for any natural k.

• Our expressions are trees because each
proper subexpression has exactly one parent.
(The entire expression, the root of the tree,
has no parent.)

A Definition of Expression Trees

• We can give a recursive definition of
expression trees that is very similar to our
other recursive definitions:

• (1) A single atomic value is an expression
tree.

• (2) A k-ary operator, acting on a sequence of
k expression trees, gives an expression tree.

• (3) The only expression trees are those given
by rules (1) and (2).

Induction on Expression Trees

• Rule (3) gives us a Law of Induction for
expression trees.

• If we prove that P(a) is true for any atomic
value a, and prove that P(E) is true whenever
E is any k-ary operator acting on any k
expression trees E1,..., Ek such that P(Ei) is
true for all i, then we have proved that P(E) is
true for any expression tree E.

Types of Expressions

• In boolean expressions the atomic
values are 0 and 1 (false and true), or
variables ranging over those values, and the
operators are ¬, ⋀, ⋁, ⊕, →, and ↔.

• In Discussion #7 we’ll use just ⋀,⋁, and ¬.

• The ¬ operator is unary and all the other
operators are binary.

Types of Expressions

• In Java arithmetic expressions, the
atomic values come from one of the number
types, and the operators are +, ×, -, /, % (for
integer types), and so forth.

• The - operator can be either unary or binary,
while all the others are binary.

• We’ll consider our own arithmetic
expressions to use just +, ×, -, and /.

Clicker Question #1
• Remember that the depth of a tree is the

length of the longest path from the root to a leaf.
If I have an arithmetic expression with all the
atomic values from {0,1,...,9} and all the
operators ×, what is the largest number I could
represent in depth 3?

• (a) 23 = 8

• (b) 98 = 43046721

• (c) 99 = 387420489

• (d) 9256

Answer #1
• Remember that the depth of a tree is the

length of the longest path from the root to a leaf.
If I have an arithmetic expression with all the
atomic values from {0,1,...,9} and all the
operators ×, what is the largest number I could
represent in depth 3?

• (a) 23 = 8

• (b) 98 = 43046721

• (c) 99 = 387420489

• (d) 9256

×
×
××××

×

9 9 9 9 9 9 99

Types of Expressions

• Later in Chapter 5 and 14 we’ll work with
regular expressions, where the atomic
values are letters and ∅, and there is one
unary operator * and two binary operators +
(for union) and ⋅(for concatenation of
languages).

• An induction over all regular expressions will
have two base cases and three inductive cases.

Prefix, Infix, and Postfix Strings

• There are three ways to represent
a boolean or arithmetic expression
by a string.

• For an example, take the arithmetic
expression “b×b - 4×a×c” that
occurs in the quadratic formula.
The expression tree for this
formula has nine nodes -- the root
is a - operator, its children are ×
operators, and the leaves are
atomic values a, b, c, and 4.

bb

×

-

c

×

×

4 a

Prefix, Infix, and Postfix Strings

• “b×b - 4×a×c” is the infix string
for this expression. The prefix
string for it is “-×bb××4ac” and the
postfix string is “bb×4a×c×-”.

• Note that each string contains the
same atomic and operator
symbols, just in a different order.
(Some infix strings also contain
parentheses, making them longer
than the other two.)

bb

×

-

c

×

×

4 a

Clicker Question #2

• What are the prefix and postfix strings for
the arithmetic expression whose infix string is
“(a × a) + (b × b)”?

• (a) prefix “+×aa×bb”, postfix “aa×bb×+”

• (b) prefix “+(×aa)(×bb)”, postfix “(aa×)(bb×)+”

• (c) prefix “aa×bb×+”, postfix “+×aa×bb”

• (d) prefix “+××aabb”, postfix “aabb××+”

Answer #2

• What are the prefix and postfix strings for
the arithmetic expression whose infix string is
“(a × a) + (b × b)”?

• (a) prefix “+×aa×bb”, postfix “aa×bb×+”

• (b) prefix “+(×aa)(×bb)”, postfix “(aa×)(bb×)+”

• (c) prefix “aa×bb×+”, postfix “+×aa×bb”

• (d) prefix “+××aabb”, postfix “aabb××+”

Prefix, Postfix, and Infix Strings

• We can recursively define each of the three
strings from the expression.

• For example, “the postfix string of an atomic
value is itself, and the postfix string of an
operator applied to k subexpressions is the
concatenation of the postfix strings for the
subexpressions, followed by the symbol for
the operator”.

• The other two definitions are similar.

Parsing, Evaluating Expressions

• A major problem in computer science is to
take a string and parse it, which means to
determine the expression tree that it
represents.

• A compiler must take a string in a computer
language and determine (1) whether it is a
valid program, (2) how the string is broken
down into language parts, and (3) what the
meaning of the resulting program is. You’ll
see more about parsing in courses like
CMPSCI 501 and 410.

Parsing, Evaluating Expressions

• The most common thing to do with an
expression is to evaluate it, which means
to determine its value by applying the
operators to the atomic values.

• The basic evaluation algorithm for an
expression is “If the expression is an atomic
value, return the value. If it is an operation
applied to subexpressions, evaluate each
subexpression, apply the operator to the
results, and return the new result”.

Parsing, Evaluating Expressions

• Parsing a program is just evaluating an
expression over a complex set of values and
operators.

• Here the “value” is the meaning of each
subprogram. We might, for example, consider
the meaning of each subprogram to be the
machine-language program that implements
it.

Clicker Question #3

• Consider arithmetic expressions where the
operators are +, ×, and -, and all the atomic values
are 0. I would like to prove by induction on
expressions that all such expressions evaluate to 0.
How should I do this?

• (a) Strong induction on number of nodes in tree

• (b) Base 0 = 0, induction 0 + 0 = 0 × 0 = 0 - 0 = 0

• (c) Base depth = 0, induction depth n to n + 1

• (d) Base an empty tree, induction for +, ×, and -

Answer #3

• Consider arithmetic expressions where the
operators are +, ×, and -, and all the atomic values
are 0. I would like to prove by induction on
expressions that all such expressions evaluate to 0.
How should I do this?

• (a) Strong induction on number of nodes in tree

• (b) Base 0 = 0, induction 0 + 0 = 0 × 0 = 0 - 0 = 0

• (c) Base depth = 0, induction depth n to n + 1

• (d) Base an empty tree, induction for +, ×, and -

The Definition of Truth

• In this course we have been informal about
what it means for a logical statement to be
true or false in a given situation.

• But to do metamathematics
(mathematics about mathematics), we would
need a formal definition of what a model for
a statement is, and whether a given statement
is true in a given model.

The Definition of Truth

• The Polish logician Alfred Tarski gave a formal
definition of truth in 1933, using
induction on the definition of logical
statements.

• A statement is built up from atomic
statements using boolean operators and
quantifiers. The truth value of atomic
statements is assumed to be given in any
particular model.

The Definition of Truth

• The truth of more complex statements can
be defined by inductive rules, such as “∃x:P(x)
is true if and only if there is an object z such
that P(z) is true”, in terms of the truth of
simpler statements.

• Tarski’s definition gives a justification for our
four quantifier proof rules.

Call Trees for Algorithms

• If we have a method that makes recursive
calls upon itself, but eventually terminates, we
can make a diagram called a call tree that
represents all the recursive calls.

• A node in the call tree represents a call to
the method, and node x has node y as a child
if the call y is made by the version of the
method called by call x.

Call Trees for Algorithms

• The call tree is finite if every version eventually
terminates, and the leaves of the call tree
represent calls that cause no recursion.

• If we prove that every leaf call terminates with
the right answer, and that every non-leaf call
terminates with the right answer if all of its child
calls do so, then by the Law of Induction for
trees, we have proved that every recursive call
(every call tree) corresponds to a version of the
method that terminates with the right answer.
This is how we prove that the method is correct.

