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Recursion on Trees

• Trees to Represent Expressions

• A Recursive Definition of Expression Trees

• Types of Expressions

• Prefix, Infix, and Postfix Strings for 
Expressions

• Parsing and Evaluating Expressions

• The Definition of Truth

• Call Trees for Algorithms



A Recursive Tree Definition

• (Note: Five slides repeated from Lecture #22)

• A single node, with no edges, is a rooted tree 
and the node is its root.

• We can make a rooted tree out of one or 
more existing rooted trees plus a new node 
x.  The root of the new tree is x, and we add 
edges from x to the roots of each of the 
existing trees.

• The only possible rooted trees are those 
made by the two rules above.



Induction on Rooted Trees

• This is a recursive definition of rooted trees.

• As with our other recursively defined types, 
we now have a new Law of Mathematical 
Induction for rooted trees.  

• If we prove P(T) whenever T has only one 
node, and that P(T) is true when T is made 
from subtrees U1, U2,..., Uk and P(Ui) is true 
for all i, then we may conclude that P(T) is 
true for any rooted tree T.



A Theorem About Rooted Trees

• Let’s use this induction rule to prove a 
theorem.

• Theorem:  If T is any rooted tree with n 
nodes and e edges, then e = n - 1.

• Base Case: If T is a one-node tree, then e = 0 
and n = 1 so e = n - 1 is true.

• Now we have to set up the inductive step.



A Theorem About Rooted Trees

• Inductive Step: Let T be made by the second 
rule from U1, U2,..., Uk and say that each of 
the Ui’s has ni nodes and ei edges, so that ei = 
ni - 1 by the IH.  

• T has all the nodes and edges from all the 
subtrees, plus one new node (its root) and k 
new edges (one from its root to each of the 
existing roots).  



A Theorem About Rooted Trees

• So n, the number of nodes in T, is the sum of 
the ni’s plus 1.  

• And e, the number of edges in T, is the sum of 
the ei’s plus k.  

• The sum S of the ei’s is the sum of the ni’s 
minus k, so e = S + k and n = (S + k) + 1, and 
therefore = n - 1.

• We’ve completed the inductive step and thus 
proved our P(T) for all rooted trees T.



Trees to Represent Expressions

• Trees are useful for 
representing collections of 
objects in a hierarchical 
structure, where every object 
except one has a unique 
“parent” object.  

• We’ve mentioned people in 
an organization, classes in an 
inheritance hierarchy, and files 
in a directory/folder system.
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Trees to Represent Expressions

• Expressions are collections of atomic 
values connected by operators.  

• We’ve seen boolean expressions in the 
first part of the course, and we’ll see them 
again in Discussion #7 a week from Monday.  

• There are also arithmetic expressions 
as in Java.  

• Even whole programs can be thought of as 
expressions.



Trees to Represent Expressions

• Operators can be unary, meaning that they 
take one argument (like ¬ or -) or binary, 
meaning that they take two (like ⋀, ⋁, +, or 
×).  In general we could also have ternary, 4-
ary, or k-ary operators for any natural k.

• Our expressions are trees because each 
proper subexpression has exactly one parent.  
(The entire expression, the root of the tree, 
has no parent.)



A Definition of Expression Trees 

• We can give a recursive definition of 
expression trees that is very similar to our 
other recursive definitions:

• (1) A single atomic value is an expression 
tree.

• (2) A k-ary operator, acting on a sequence of 
k expression trees, gives an expression tree.

• (3) The only expression trees are those given 
by rules (1) and (2).



Induction on Expression Trees

• Rule (3) gives us a Law of Induction for 
expression trees.

• If we prove that P(a) is true for any atomic 
value a, and prove that P(E) is true whenever 
E is any k-ary operator acting on any k 
expression trees E1,..., Ek such that P(Ei) is 
true for all i, then we have proved that P(E) is 
true for any expression tree E.



Types of Expressions

• In boolean expressions the atomic 
values are 0 and 1 (false and true), or 
variables ranging over those values, and the 
operators are ¬, ⋀, ⋁, ⊕, →, and ↔.  

• In Discussion #7 we’ll use just ⋀,⋁, and ¬.  

• The ¬ operator is unary and all the other 
operators are binary.



Types of Expressions

• In Java arithmetic expressions, the 
atomic values come from one of the number 
types, and the operators are +, ×, -, /, % (for 
integer types), and so forth.  

• The - operator can be either unary or binary, 
while all the others are binary.  

• We’ll consider our own arithmetic 
expressions to use just +, ×, -, and /.



Clicker Question #1
• Remember that the depth of a tree is the 

length of the longest path from the root to a leaf.  
If I have an arithmetic expression with all the 
atomic values from {0,1,...,9} and all the 
operators ×, what is the largest number I could 
represent in depth 3?

• (a) 23 = 8

• (b) 98 = 43046721

• (c) 99 = 387420489

• (d) 9256



Answer #1
• Remember that the depth of a tree is the 

length of the longest path from the root to a leaf.  
If I have an arithmetic expression with all the 
atomic values from {0,1,...,9} and all the 
operators ×, what is the largest number I could 
represent in depth 3?

• (a) 23 = 8

• (b) 98 = 43046721

• (c) 99 = 387420489

• (d) 9256
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Types of Expressions

• Later in Chapter 5 and 14 we’ll work with 
regular expressions, where the atomic 
values are letters and ∅, and there is one 
unary operator * and two binary operators + 
(for union) and ⋅(for concatenation of 
languages). 

• An induction over all regular expressions will 
have two base cases and three inductive cases.



Prefix, Infix, and Postfix Strings

• There are three ways to represent 
a boolean or arithmetic expression 
by a string.  

• For an example, take the arithmetic 
expression “b×b - 4×a×c” that 
occurs in the quadratic formula.  
The expression tree for this 
formula has nine nodes -- the root 
is a - operator, its children are × 
operators, and the leaves are 
atomic values a, b, c, and 4.
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Prefix, Infix, and Postfix Strings

• “b×b - 4×a×c” is the infix string 
for this expression.  The prefix 
string for it is “-×bb××4ac” and the 
postfix string is “bb×4a×c×-”.  

• Note that each string contains the 
same atomic and operator 
symbols, just in a different order.  
(Some infix strings also contain 
parentheses, making them longer 
than the other two.)  
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Clicker Question #2

• What are the prefix and postfix strings for 
the arithmetic expression whose infix string is 
“(a × a) + (b × b)”?

• (a) prefix “+×aa×bb”, postfix “aa×bb×+”

• (b) prefix “+(×aa)(×bb)”, postfix “(aa×)(bb×)+”

• (c) prefix “aa×bb×+”, postfix “+×aa×bb”

• (d) prefix “+××aabb”, postfix “aabb××+”



Answer #2

• What are the prefix and postfix strings for 
the arithmetic expression whose infix string is 
“(a × a) + (b × b)”?

• (a) prefix “+×aa×bb”, postfix “aa×bb×+”

• (b) prefix “+(×aa)(×bb)”, postfix “(aa×)(bb×)+”

• (c) prefix “aa×bb×+”, postfix “+×aa×bb”

• (d) prefix “+××aabb”, postfix “aabb××+”



Prefix, Postfix, and Infix Strings

• We can recursively define each of the three 
strings from the expression.  

• For example, “the postfix string of an atomic 
value is itself, and the postfix string of an 
operator applied to k subexpressions is the 
concatenation of the postfix strings for the 
subexpressions, followed by the symbol for 
the operator”.

• The other two definitions are similar.



Parsing, Evaluating Expressions

• A major problem in computer science is to 
take a string and parse it, which means to 
determine the expression tree that it 
represents.  

• A compiler must take a string in a computer 
language and determine (1) whether it is a 
valid program, (2) how the string is broken 
down into language parts, and (3) what the 
meaning of the resulting program is.  You’ll 
see more about parsing in courses like 
CMPSCI 501 and 410.



Parsing, Evaluating Expressions

• The most common thing to do with an 
expression is to evaluate it, which means 
to determine its value by applying the 
operators to the atomic values.  

• The basic evaluation algorithm for an 
expression is “If the expression is an atomic 
value, return the value.  If it is an operation 
applied to subexpressions, evaluate each 
subexpression, apply the operator to the 
results, and return the new result”.



Parsing, Evaluating Expressions

• Parsing a program is just evaluating an 
expression over a complex set of values and 
operators.

• Here the “value” is the meaning of each 
subprogram.  We might, for example, consider 
the meaning of each subprogram to be the 
machine-language program that implements 
it.  



Clicker Question #3

• Consider arithmetic expressions where the 
operators are +, ×, and -, and all the atomic values 
are 0.  I would like to prove by induction on 
expressions that all such expressions evaluate to 0.  
How should I do this?

• (a) Strong induction on number of nodes in tree

• (b) Base 0 = 0, induction 0 + 0 = 0 × 0 = 0 - 0 = 0

• (c) Base depth = 0, induction depth n to n + 1

• (d) Base an empty tree, induction for +, ×, and -



Answer #3

• Consider arithmetic expressions where the 
operators are +, ×, and -, and all the atomic values 
are 0.  I would like to prove by induction on 
expressions that all such expressions evaluate to 0.  
How should I do this?

• (a) Strong induction on number of nodes in tree

• (b) Base 0 = 0, induction 0 + 0 = 0 × 0 = 0 - 0 = 0

• (c) Base depth = 0, induction depth n to n + 1

• (d) Base an empty tree, induction for +, ×, and -



The Definition of Truth

• In this course we have been informal about 
what it means for a logical statement to be 
true or false in a given situation.  

• But to do metamathematics 
(mathematics about mathematics), we would 
need a formal definition of what a model for 
a statement is, and whether a given statement 
is true in a given model.



The Definition of Truth

• The Polish logician Alfred Tarski gave a formal 
definition of truth in 1933, using 
induction on the definition of logical 
statements.  

• A statement is built up from atomic 
statements using boolean operators and 
quantifiers.  The truth value of atomic 
statements is assumed to be given in any 
particular model.  



The Definition of Truth

• The truth of more complex statements can 
be defined by inductive rules, such as “∃x:P(x) 
is true if and only if there is an object z such 
that P(z) is true”, in terms of the truth of 
simpler statements.

• Tarski’s definition gives a justification for our 
four quantifier proof rules.



Call Trees for Algorithms

• If we have a method that makes recursive 
calls upon itself, but eventually terminates, we 
can make a diagram called a call tree that 
represents all the recursive calls. 

•  A node in the call tree represents a call to 
the method, and node x has node y as a child 
if the call y is made by the version of the 
method called by call x.



Call Trees for Algorithms

• The call tree is finite if every version eventually 
terminates, and the leaves of the call tree 
represent calls that cause no recursion.

• If we prove that every leaf call terminates with 
the right answer, and that every non-leaf call 
terminates with the right answer if all of its child 
calls do so, then by the Law of Induction for 
trees, we have proved that every recursive call 
(every call tree) corresponds to a version of the 
method that terminates with the right answer.  
This is how we prove that the method is correct.


