
CMPSCI 250: Introduction to
Computation

Lecture #19: Proving the Basic Facts of Arithmetic
David Mix Barrington
5 March 2014

Proving the Facts of Arithmetic

• The Semiring of the Naturals

• The Definitions of Addition and Multiplication

• A Warmup: ∀x: 0 + x = x

• Commutativity of Addition

• Associativity of Addition

• Commutativity of Multiplication

• Associativity and the Distributive Law

The Semiring of the Naturals
• The natural numbers form an algebraic structure

called a semiring, obeying these axioms:

1. There are two binary operations called + and ×.

2. Both operations are commutative.

3. Both operations are associative.

4. There is an additive identity called 0 and a
multiplicative identity called 1.

5. Multiplication distributes over addition, so that
∀u: ∀v: ∀w: u × (v + w) = (u × v) + (u × w).

Details of the Semiring Axioms

• Commutativity means ∀u:∀v: (u + v) = (v + u)
and ∀u:∀v: (u × v) = (v × u).

• Associativity means ∀u:∀v:∀w:(u + (v + w)) =
((u + v) + w) and ∀u:∀v:∀w: (u × (v × w)) =
((u × v) × w).

• Identity rules are ∀u: (0 + u) = (u + 0) = u,
∀u:(1 × u) = (u × 1) = u, and ∀u: (0 × u) = (u
× 0) = 0.

Clicker Question #1

• Consider the operation of concatenation on
binary strings. Which of these is true?

• (a) Concatenation is both commutative and
associative.

• (b) Concatenation is neither commutative nor
associative.

• (c) Concatenation is associative but not
commutative.

• (d) Concatenation is commutative but not
associative.

Answer #1

• Consider the operation of concatenation on
binary strings. Which of these is true?

• (a) Concatenation is both commutative and
associative.

• (b) Concatenation is neither commutative nor
associative.

• (c) Concatenation is associative but not
commutative.

• (d) Concatenation is commutative but not
associative.

Definition of Addition

• We defined addition recursively using the
successor operation (now called “S” here to
save space).

• We defined x + 0 to be x, and defined x + Sy
to be S(x + y).

• This definition turned into a recursive
method that always terminates because the
number added, the second argument, always
gets smaller.

Definition of Multiplication

• We also defined multiplication recursively
using the successor and addition operations.

• We defined x × 0 to be 0, and defined x × Sy
to be (x × y) + x.

• Again there is a recursive method that always
terminates because the second argument
always gets smaller.

What We May Assume

• We don’t want to assume any properties of
the operations that we haven’t proved, and
only a few of the semiring properties are true
“by definition”.

• Our notation can accidentally make such
assumptions -- when we write “(x × y) + x”
we really mean plus(times(x, y), x)
using the pseudo-Java methods we have
defined.

Top-Down and Bottom-Up

• We can prove the big properties either top-
down or bottom-up.

• A top-down approach identifies
subproperties that we need to prove as we
attack the overall problem through divide-
and-conquer.

• A bottom-up approach has us guess what
subproperties might be useful to prove, just
as we build up a library of methods in a Java
class.

A Warmup: ∀x: 0 + x = x

• The property ∀x: 0 + x = x does not appear in
our definition, though ∀x: x + 0 = x does.

• It would follow from commutativity of
addition, but we don’t have that yet.

• Let’s prove it by ordinary induction on the
(natural) variable x, letting P(x) be “0 + x = x”.

• The base case P(0) says “0 + 0 = 0”, and this
does follow from the definition and so is true.

A Warmup: ∀x: 0 + x = x

• For the inductive case we assume “0 + x = x”
and try to prove “0 + Sx = Sx”.

• We evaluate 0 + Sx as S(0 + x) by the
definition, then use the IH to substitute “x”
for “0 + x” and get that this is Sx.

• This finishes the inductive case and proves
∀x: P(x).

Clicker Question #2
• Which of these pairs of pseudo-Java method

calls do not return equal naturals?

• (a) plus(successor(x), 0) and
successor(plus(x, 0))

• (b) successor(x) and plus(x,
successor(0))

• (c) successor(plus(0, x)) and
plus(0, successor(x))

• (d) successor(plus(0, x)) and plus
(successor(0), successor(x))

Answer #2
• Which of these pairs of pseudo-Java method

calls do not return equal naturals?

• (a) plus(successor(x), 0) and
successor(plus(x, 0))

• (b) successor(x) and plus(x,
successor(0))

• (c) successor(plus(0, x)) and
plus(0, successor(x))

• (d) successor(plus(0, x)) and plus
(successor(0), successor(x))

Commutativity of Addition

• How shall we prove ∀x: ∀y: x + y = y + x?

• The usual technique is to let one variable be
arbitrary and use induction on the other. Since
addition operates by recursion on the second
argument, we’ll let x be arbitrary and use
induction on y, letting P(y) be “x + y = y + x”.

• The base case P(0) is “x + 0 = 0 + x”, and after
our warmup we know that both of these are
equal to x, so the base case is done.

Commutativity of Addition

• The inductive case assumes “x + y = y + x”
and wants to prove “x + Sy = Sy + x”.

• The definition tells us that x + Sy = S(x + y),
so we need to show that Sy + x = S(y + x) or
y + Sx.

• Then we can use the IH to replace y + x by x
+ y.

• So we just need the lemma ∀x: ∀y: Sy + x =
S(y + x) or y + Sx.

Proving the Lemma

• For the lemma ∀x: ∀y: Sy + x = y + Sx, we’d prefer
to let y be arbitrary and use induction on x (we can
switch the two ∀ quantifiers).

• The P(x) for this induction is thus “Sy + x = y + Sx”.

• The base case is “Sy + 0 = y + S0”, which follows
from the definition.

• For the inductive case, we compute Sy + Sx as S(Sy
+ x) which is S(y + Sx) by the IH, which is y + SSx,
the RHS of P(Sx).

Associativity of Addition

• To prove ∀x: ∀y: ∀z: x + (y + z) = (x + y) + z,
we let x and y be arbitrary and use ordinary
induction on z.

• The base case P(0) is “x + (y + 0) = (x + y) +
0”, which follows by using the base case of
the definition once on each side.

• So we assume P(z), which is “x + (y + z) = (x
+ y) + z”, and try to prove P(Sz), which is “x +
(y + Sz) = (x + y) + Sz”.

Associativity of Addition

• Working with the LHS, x + (y + Sz) = x +
S(y + z) = S(x + (y + z)), using the definition
of addition each time.

• This is S((x + y) + z) by the IH.

• Using the definition of addition one more
time, S((x + y) + z) is equal to (x + y) + Sz,
which completes the inductive step and thus
the proof.

Clicker Question #3

• Which of these facts is part of the definition of
multiplication?

• (a) ∀u: ∀v: u × v = v × u

• (b) ∀u: ∀v: Su × v = (u × v) + v

• (c) ∀u: u × S0 = u

• (d) ∀u: u × 0 = 0

Clicker Question #3

• Which of these facts is part of the definition of
multiplication?

• (a) ∀u: ∀v: u × v = v × u

• (b) ∀u: ∀v: Su × v = (u × v) + v

• (c) ∀u: u × S0 = u

• (d) ∀u: u × 0 = 0

Notes on Associativity

• Note that we didn’t need commutativity to
prove associativity here, though with
multiplication the order of our proofs will
matter.

• Also note that during this proof we need to be
sure not to assume associativity by our use of
notation, by writing things like “x + y + z”.

• Once we have associativity, we can omit
parentheses in such cases as we have done.

Commutativity of Multiplication

• Now we want to prove ∀u: ∀v: u × v = v × u, and
we will work bottom-up.

• Our first lemma is ∀u: u × 0 = 0 × u. We let u be
arbitrary and note that u × 0 = 0 by the definition.
We need induction to prove ∀u: 0 × u = 0.

• We let P(u) be “0 × u = 0”, note that P(0) follows
from the definition, assume P(u), and prove P(Su)
or “0 × Su = 0” by applying the definition to 0 × Su
to get (0 × u) + 0, which is 0 + 0 by the IH and 0
by the definition of addition.

Commutativity of Multiplication

• Our second lemma is ∀u: ∀v: Su × v = (u × v)
+ v. We let u be arbitrary and use induction
on v, so that P(v) is “Su × v = (u × v) + v”.

• The base case P(0) is “Su × 0 = (u × 0) + 0”
and is easy to verify. We assume Su × v = (u
× v) + v and try to prove “Su × Sv = (u × Sv)
+ Sv”.

Commutativity of Multiplication

• Working the LHS, Su × Sv = (Su × v) + Su,
which is ((u × v) + v) + Su by the IH, and then
(u × v) + (v + Su) by associativity of addition.

• This is (u × v) + (Su + v) by commutativity of
addition, (u × v) + (u + Sv) by a lemma above,
((u × v) + u) + Sv by associativity of addition
again, and finally (u × Sv) + Sv by the
definition of multiplication.

Finishing Commutativity of ×

• We want to prove ∀u: ∀v: (u × v) = (v × u),
so we let u be arbitrary and use induction on
v. Our statement P(v) is “(u × v) = (v × u)”.

• The base case P(0) is “(u × 0) = (0 × u)”, and
this is exactly the conclusion of our first
lemma.

• For the inductive step, our IH is P(v) or “(u ×
v) = (v × u)”.

Finishing Commutativity of ×

• We want to prove P(Sv), which is “(u × Sv) =
(Sv × u)”.

• The left-hand side is (u × v) + u by the
definition of multiplication.

• The right-hand side is (v × u) + u by the second
lemma, reversing the roles of u and v. (We use
Specification on the result.)

• Our IH now tells us that this form of the LHS is
equal to this form of the RHS, completing the
inductive step and thus completing the proof.

Associativity and Distributivity

• As in the textbook, we’ll start proving the
associative law for multiplication, which is ∀u:
∀v: ∀w: u × (v × w) = (u × v) × w.

• We let u and v be arbitrary, and use induction
on w with P(w) as “u × (v × w) = (u × v) ×
w”. The base case P(0) is “u × (v × 0) = (u ×
v) × 0”, which reduces to “0 = 0” by known
rules.

• We assume P(w) and try to prove P(Sw)
which is “u × (v × Sw) = (u × v) × Sw”.

Associativity and Distributivity

• The LHS reduces to u × ((v × w) + v) by the
definition, which is (u × (v × w)) + (u × v) by
distributivity, which unfortunately we haven’t
proved yet.

• If we had done distributivity first, we could
finish by using the IH to get ((u × v) × w) + (u
× v), and then the definition of multiplication to
get (u × v) × Sw, the desired right-hand side.

• This makes proving the Distributive Law a
rather important exercise!

