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Proving the Facts of Arithmetic

• The Semiring of the Naturals

• The Definitions of Addition and Multiplication

• A Warmup: ∀x: 0 + x = x

• Commutativity of Addition

• Associativity of Addition

• Commutativity of Multiplication

• Associativity and the Distributive Law



The Semiring of the Naturals
• The natural numbers form an algebraic structure 

called a semiring, obeying these axioms:

1.  There are two binary operations called + and ×.

2.  Both operations are commutative.

3.  Both operations are associative.

4.  There is an additive identity called 0 and a 
multiplicative identity called 1.

5.  Multiplication distributes over addition, so that 
∀u: ∀v: ∀w: u × (v + w) = (u × v) + (u × w).



Details of the Semiring Axioms

• Commutativity means ∀u:∀v: (u + v) = (v + u) 
and ∀u:∀v: (u × v) = (v × u).

• Associativity means ∀u:∀v:∀w:(u + (v + w)) = 
((u + v) + w) and ∀u:∀v:∀w: (u × (v × w)) = 
((u × v) × w).

• Identity rules are ∀u: (0 + u) = (u + 0) = u, 
∀u:(1 × u) = (u × 1) = u, and ∀u: (0 × u) = (u 
× 0) = 0.



Clicker Question #1

• Consider the operation of concatenation on 
binary strings.  Which of these is true?

• (a) Concatenation is both commutative and 
associative.

• (b) Concatenation is neither commutative nor 
associative.

• (c) Concatenation is associative but not 
commutative.

• (d) Concatenation is commutative but not 
associative.



Answer #1

• Consider the operation of concatenation on 
binary strings.  Which of these is true?

• (a) Concatenation is both commutative and 
associative.

• (b) Concatenation is neither commutative nor 
associative.

• (c) Concatenation is associative but not 
commutative.

• (d) Concatenation is commutative but not 
associative.



Definition of Addition

• We defined addition recursively using the 
successor operation (now called “S” here to 
save space).  

• We defined x + 0 to be x, and defined x + Sy 
to be S(x + y).  

• This definition turned into a recursive 
method that always terminates because the 
number added, the second argument, always 
gets smaller.



Definition of Multiplication

• We also defined multiplication recursively 
using the successor and addition operations.  

• We defined x × 0 to be 0, and defined x × Sy 
to be (x × y) + x.  

• Again there is a recursive method that always 
terminates because the second argument 
always gets smaller.



What We May Assume

• We don’t want to assume any properties of 
the operations that we haven’t proved, and 
only a few of the semiring properties are true 
“by definition”.  

• Our notation can accidentally make such 
assumptions -- when we write “(x × y) + x” 
we really mean plus(times(x, y), x) 
using the pseudo-Java methods we have 
defined.



Top-Down and Bottom-Up

• We can prove the big properties either top-
down or bottom-up.  

• A top-down approach identifies 
subproperties that we need to prove as we 
attack the overall problem through divide-
and-conquer.  

• A bottom-up approach has us guess what 
subproperties might be useful to prove, just 
as we build up a library of methods in a Java 
class.



A Warmup: ∀x: 0 + x = x

• The property ∀x: 0 + x = x does not appear in 
our definition, though ∀x: x + 0 = x does. 

• It would follow from commutativity of 
addition, but we don’t have that yet.  

• Let’s prove it by ordinary induction on the 
(natural) variable x, letting P(x) be “0 + x = x”.

• The base case P(0) says “0 + 0 = 0”, and this 
does follow from the definition and so is true.  



A Warmup: ∀x: 0 + x = x

• For the inductive case we assume “0 + x = x” 
and try to prove “0 + Sx = Sx”.  

• We evaluate 0 + Sx as S(0 + x) by the 
definition, then use the IH to substitute “x” 
for “0 + x” and get that this is Sx.  

• This finishes the inductive case and proves 
∀x: P(x).



Clicker Question #2
• Which of these pairs of pseudo-Java method 

calls do not return equal naturals?

• (a) plus(successor(x), 0) and 
successor(plus(x, 0))

• (b) successor(x) and plus(x, 
successor(0))

• (c) successor(plus(0, x)) and 
plus(0, successor(x))

• (d) successor(plus(0, x)) and plus 
(successor(0), successor(x))



Answer #2
• Which of these pairs of pseudo-Java method 

calls do not return equal naturals?

• (a) plus(successor(x), 0) and 
successor(plus(x, 0))

• (b) successor(x) and plus(x, 
successor(0))

• (c) successor(plus(0, x)) and 
plus(0, successor(x))

• (d) successor(plus(0, x)) and plus 
(successor(0), successor(x))



Commutativity of Addition

• How shall we prove ∀x: ∀y: x + y = y + x? 

• The usual technique is to let one variable be 
arbitrary and use induction on the other.  Since 
addition operates by recursion on the second 
argument, we’ll let x be arbitrary and use 
induction on y, letting P(y) be “x + y = y + x”.  

• The base case P(0) is “x + 0 = 0 + x”, and after 
our warmup we know that both of these are 
equal to x, so the base case is done.



Commutativity of Addition

• The inductive case assumes “x + y = y + x” 
and wants to prove “x + Sy = Sy + x”.  

• The definition tells us that x + Sy = S(x + y), 
so we need to show that Sy + x = S(y + x) or 
y + Sx.  

• Then we can use the IH to replace y + x by x 
+ y.

• So we just need the lemma ∀x: ∀y: Sy + x = 
S(y + x) or y + Sx.



Proving the Lemma

• For the lemma ∀x: ∀y: Sy + x = y + Sx, we’d prefer 
to let y be arbitrary and use induction on x (we can 
switch the two ∀ quantifiers).  

• The P(x) for this induction is thus “Sy + x = y + Sx”.  

• The base case is “Sy + 0 = y + S0”, which follows 
from the definition.  

• For the inductive case, we compute Sy + Sx as S(Sy 
+ x) which is S(y + Sx) by the IH, which is y + SSx, 
the RHS of P(Sx).



Associativity of Addition

• To prove ∀x: ∀y: ∀z: x + (y + z) = (x + y) + z, 
we let x and y be arbitrary and use ordinary 
induction on z.  

• The base case P(0) is “x + (y + 0) = (x + y) + 
0”, which follows by using the base case of 
the definition once on each side.

• So we assume P(z), which is “x + (y + z) = (x 
+ y) + z”, and try to prove P(Sz), which is “x + 
(y + Sz) = (x + y) + Sz”.



Associativity of Addition

• Working with the LHS, x + (y + Sz) = x + 
S(y + z) = S(x + (y + z)), using the definition 
of addition each time.  

• This is S((x + y) + z) by the IH.  

• Using the definition of addition one more 
time, S((x + y) + z) is equal to (x + y) + Sz, 
which completes the inductive step and thus 
the proof.



Clicker Question #3

• Which of these facts is part of the definition of 
multiplication?

• (a) ∀u: ∀v: u × v = v × u

• (b) ∀u: ∀v: Su × v = (u × v) + v

• (c) ∀u: u × S0 = u

• (d) ∀u: u × 0 = 0



Clicker Question #3

• Which of these facts is part of the definition of 
multiplication?

• (a) ∀u: ∀v: u × v = v × u

• (b) ∀u: ∀v: Su × v = (u × v) + v

• (c) ∀u: u × S0 = u

• (d) ∀u: u × 0 = 0



Notes on Associativity

• Note that we didn’t need commutativity to 
prove associativity here, though with 
multiplication the order of our proofs will 
matter.  

• Also note that during this proof we need to be 
sure not to assume associativity by our use of 
notation, by writing things like “x + y + z”.  

• Once we have associativity, we can omit 
parentheses in such cases as we have done. 



Commutativity of Multiplication

• Now we want to prove ∀u: ∀v: u × v = v × u, and 
we will work bottom-up. 

• Our first lemma is ∀u: u × 0 = 0 × u.  We let u be 
arbitrary and note that u × 0 = 0 by the definition.  
We need induction to prove ∀u: 0 × u = 0.  

• We let P(u) be “0 × u = 0”, note that P(0) follows 
from the definition, assume P(u), and prove P(Su) 
or “0 × Su = 0” by applying the definition to 0 × Su 
to get (0 × u) + 0, which is 0 + 0 by the IH and 0 
by the definition of addition.



Commutativity of Multiplication

• Our second lemma is ∀u: ∀v: Su × v = (u × v) 
+ v.  We let u be arbitrary and use induction 
on v, so that P(v) is “Su × v = (u × v) + v”. 

•  The base case P(0) is “Su × 0 = (u × 0) + 0” 
and is easy to verify.  We assume Su × v = (u 
× v) + v and try to prove “Su × Sv = (u × Sv) 
+ Sv”.  



Commutativity of Multiplication

• Working the LHS, Su × Sv = (Su × v) + Su, 
which is ((u × v) + v) + Su by the IH, and then 
(u × v) + (v + Su) by associativity of addition.  

• This is (u × v) + (Su + v) by commutativity of 
addition, (u × v) + (u + Sv) by a lemma above, 
((u × v) + u) + Sv by associativity of addition 
again, and finally (u × Sv) + Sv by the 
definition of multiplication.



Finishing Commutativity of ×

• We want to prove ∀u: ∀v: (u × v) = (v × u), 
so we let u be arbitrary and use induction on 
v.  Our statement P(v) is “(u × v) = (v × u)”.

• The base case P(0) is “(u × 0) = (0 × u)”, and 
this is exactly the conclusion of our first 
lemma.

• For the inductive step, our IH is P(v) or “(u × 
v) = (v × u)”. 



Finishing Commutativity of ×

• We want to prove P(Sv), which is “(u × Sv) = 
(Sv × u)”.  

• The left-hand side is (u × v) + u by the 
definition of multiplication.  

• The right-hand side is (v × u) + u by the second 
lemma, reversing the roles of u and v.  (We use 
Specification on the result.)

• Our IH now tells us that this form of the LHS is 
equal to this form of the RHS, completing the 
inductive step and thus completing the proof.



Associativity and Distributivity

• As in the textbook, we’ll start proving the 
associative law for multiplication, which is ∀u: 
∀v: ∀w: u × (v × w) = (u × v) × w.  

• We let u and v be arbitrary, and use induction 
on w with P(w) as “u × (v × w) = (u × v) × 
w”.  The base case P(0) is “u × (v × 0) = (u × 
v) × 0”, which reduces to “0 = 0” by known 
rules.

• We assume P(w) and try to prove P(Sw) 
which is “u × (v × Sw) = (u × v) × Sw”. 



Associativity and Distributivity

• The LHS reduces to u × ((v × w) + v) by the 
definition, which is (u × (v × w)) + (u × v) by 
distributivity, which unfortunately we haven’t 
proved yet.

• If we had done distributivity first, we could 
finish by using the IH to get ((u × v) × w) + (u 
× v), and then the definition of multiplication to 
get (u × v) × Sw, the desired right-hand side.

• This makes proving the Distributive Law a 
rather important exercise!


