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Recursive Definition

• The Peano Axioms for the Naturals

• Pseudo-Java for the Naturals

• Forms of the Fifth Peano Axiom

• Recursion and the Fifth Axiom

• Defining Addition and Multiplication

• Other Recursive Systems



Axioms for the Naturals

• Our mathematical arguments should always 
be subject to questioning.  For any step of 
reasoning we can ask “Why is that true?”

• The ultimate answers are always definitions 
because there is no questioning them -- if you 
and I disagree about how the natural 
numbers are defined, then we are dealing 
with two different number systems rather 
than the same one.



Axioms for the Naturals

• About 100 years ago logicians sought a definition 
of the natural numbers that was as simple as 
possible, while still allowing all the familiar 
properties to be proved.  Giuseppe Peano’s 
axioms define the naturals using three undefined 
terms: “natural”, “zero”, and “successor”.  

• The process of axiomatization is similar to the 
definition of a class in Java, where need to say 
what the objects in the class are (their data 
fields) and what can be done with them (the 
methods they support).



The Five Peano Axioms

• Zero is a natural.

• Every natural has exactly one successor, 
which is a natural.

• Zero is not the successor of any natural.

• No two naturals have the same successor.

• If you start with zero, and keep taking 
successors, you eventually reach all of the 
naturals.



Clicker Question #1
• We’ve been working with number systems 

like the “integers mod 6”, where the numbers 
are the congruence classes 0, 1, 2, 3, 4, and 5.  
“Successor” is easy to define for these 
numbers.  Which of these Peano axioms is 
false for the integers mod 6?

• (a) No two numbers share a successor.

• (b) Every number has exactly one successor. 

• (c) Zero is not the successor of any number.

• (d) Zero is a number. 



Answer #1
• We’ve been working with number systems 

like the “integers mod 6”, where the numbers 
are the congruence classes 0, 1, 2, 3, 4, and 5.  
“Successor” is easy to define for these 
numbers.  Which of these Peano axioms is 
false for the integers mod 6?

• (a) No two numbers share a successor.

• (b) Every number has exactly one successor. 

• (c) Zero is not the successor of any number.

• (d) Zero is a number. 



Pseudo-Java for the Naturals

• We can imagine pseudo-Java methods to test 
whether a natural is zero and to return the 
successor of a natural.  

• The fourth and fifth axioms imply that every 
nonzero natural is the successor of another 
natural, which we will call its predecessor. 

• We’ll assume that these methods are 
primitives of our language.



Pseudo-Java for the Naturals
boolean isZero (natural x)
// Returns true if and only if x is 
// zero

natural successor (natural x)
// Returns the successor of x

natural pred (natural x) 
// Returns the predecessor of x, if x 
// is not zero
// Throws an exception if x is zero

pred(successor(x)) == x
if !isZero(x), successor(pred(x)) == x



Forms of the Fifth Peano Axiom

• There are many equivalent ways to express 
the fifth axiom:

• Version 1: There aren’t any naturals other 
than those forced to exist by the first four 
axioms.

• Version 2: If you keep taking predecessors of 
a natural, you will eventually reach zero.



More Forms of the Fifth Axiom

• Version 3: If S is a set of naturals, 0 is in S, and 
successor(x) is in S whenever x is in S, then S 
is the set of all naturals.

• Version 4: If P is a unary predicate on 
naturals, P(0) is true, and ∀x: P(x) → 
P(successor(x)) is true, then ∀x: P(x) is true.

• Version 5: Any non-empty set of naturals 
contains a least element.



About The Forms of the Axiom

• Version 4 is the Law of Mathematical 
Induction, which will become our primary 
tool for proving things about naturals.  

• Version 4 is pretty clearly equivalent to 
Version 3, because you can replace the set S 
in Version 3 with the set {n: P(n)} in Version 4, 
and replace P(n) in version for with the 
predicate “n ∈ S”.



The Least Number Principle

• Version 5 is the Least Number Principle 
that we used in Discussion #1.  

• Here’s a proof of Version 4 using Version 5.  
Given a predicate P satisfying P(0) and ∀x: P(x) 
→ P(x+1), let Z be the set {n: ¬P(n)}.  If Z = ∅, 
then ∀x: P(x) is true.  

• If Z ≠ ∅, by Version 5 it has a least element x.  
This element can’t be 0 because P(0) is true.  But 
if x has a predecessor y, y must also be in Z 
because if P(y) were true, P(x) would be as well.



Clicker Question #2
• Let’s use Version 3 to prove the contrapositive 

of  Version 5, the Least Number Principle.   
Suppose X is a set with no least element.  If I 
find a set S that contains 0 and contains the 
successors of all of its elements, then S is all of 
the naturals.  What should we take S to be?

• (a) X itself

• (b) The elements of X with no successors

• (c) The empty set

• (d) The complement of X



Answer #2
• Let’s use Version 3 to prove the contrapositive 

of  Version 5, the Least Number Principle.   
Suppose X is a set with no least element.  If I 
find a set S that contains 0 and contains the 
successors of all of its elements, then S is all of 
the naturals.  What should we take S to be?

• (a) X itself

• (b) The elements of X with no successors

• (c) The empty set

• (d) The complement of X (which makes X = ∅)

• (there is a technicality about which I will email)



Recursion and the Fifth Axiom

• Version 2 says that repeatedly taking 
predecessors always gets you to 0.

• Here’s another form: Suppose that a method 
takes one argument of type natural, that it 
terminates when called with argument 0, and 
that when called with any nonzero argument 
x it terminates, except possibly for a call to 
itself with argument pred(x).  Then the 
method terminates with any argument.



Recursion and the Fifth Axiom

• This is a common-sense fact about the naturals 
-- our point is that it is the same common-
sense fact as the Law of Induction or the Least 
Number Principle.  This form is most useful for 
proving correctness of a method, and induction 
is most useful for lots of other purposes.

• Note that the factor method from last 
lecture does not meet the conditions of this 
statement, since the recursive call does not 
always have argument pred(x).



Defining Addition
• If we want to define a function that takes a 

natural as an argument, we can often define it 
recursively.  

• For example, we can define x + 0 to be x, and 
define x + (successor(y)) to be successor(x + 
y).  This definition suggests the recursive 
method below that adds two naturals, making 
calls on the pred and successor methods.

public natural plus (natural x, natural y) {
   if (isZero(y)) return x;
   return successor (plus (x, pred(y));}



Defining Multiplication

• Similarly we can define multiplication by the 
rules x × 0 = 0 and x × successor(y) = (x × y) 
+ x, which also turns into recursive code.

• We’ll be able to prove properties of these 
operations from these definitions.

public natural times (natural x, natural y) {
   if (isZero(y)) return 0;
   return plus (times(x, pred(y)), x);}



Other Recursive Systems

• Lots of other data types from computer 
science can be defined recursively.  

• A stack is either an empty stack or a stack 
with an element pushed onto it, and from this 
we can recursively define the pop and peek 
operations.

• A “fifth axiom” for stacks might say that 
repeatedly popping will eventually lead to an 
empty stack.



Peano Axioms for Strings

• Similarly we have “Peano” axioms for strings:

1.  λ is a string.
2. If w is a string and a is a letter, then there is a unique
    string wa.
3. If va = wb, for strings v and w and letters a and b, then 
    v = w and a = b.
4. Any string w ≠ λ can be written as va, for some string v   
    and letter a.
5. Every string is derived from λ by adding letters 
    according to rule 2.



Peano Axioms for Strings

• We can use this definition to recursively 
define operations on strings like 
concatenation and reversal.

• We can then define recursive methods on 
strings that perform these operations.

• In Excursion 2.7 we take two properties of 
the string operations on faith: (uv)R = vRuR 
and (wR)R = w.  With the string axioms and 
our definitions, we will be able to prove these.



Clicker Question #3

• To define the concatenation recursively, I 
need to define uλ and I need to define u(va), 
where u and v are strings and a is a letter.  
What should these two strings be?

• (a) uλ = λ and u(va) = u(av)

• (b) uλ = u and u(va) = uv

• (c) uλ = λ and u(va) = (uv)a

• (d) uλ = u and u(va) = (uv)a



Clicker Question #3

• To define the concatenation recursively, I 
need to define uλ and I need to define u(va), 
where u and v are strings and a is a letter.  
What should these two strings be?

• (a) uλ = λ and u(va) = u(av)

• (b) uλ = u and u(va) = uv

• (c) uλ = λ and u(va) = (uv)a

• (d) uλ = u and u(va) = (uv)a


