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Statement of the Theorem

• The Fundamental Theorem of Arithmetic says 
that any positive natural has a unique 
factorization as a product of prime numbers. 

• That is, any positive natural n can be 
expressed as p1 × p2 × ... × pk where each of 
the numbers pi is prime, and there cannot be 
two “different” factorizations of the same n.

• What exactly does “unique” mean in this 
context?



Unique Factorization

•  We can write 60, for example, as 3 × 2 × 5 × 2, 
or as 5 × 2 × 2 × 3, or as 2 × 2 × 3 × 5, and 
these are different sequences of primes.  But 
each one of them contains two 2’s, a 3, and a 5.  

• Our definition of unique factorization is 
that any two factorizations contain the same 
primes and the same number of each prime.



Prime Factorizations

• The prime factorization of 1 
contains 0 primes (an empty 
product always gives 1). 

• The prime factorization of a prime 
number has just one prime, itself.  

• The prime factorization of a 
composite number has more than 
one prime, or more than one copy 
of the same prime, or both.

1 = empty
2 = 2
3 = 3
4 = 2×2
5 = 5
6 = 2×3
7 = 7
8 = 2×2×2
9 = 3×3
10 = 2×5
11 = 11
12 = 2×2×3
13 = 13
14 = 2×7
15 = 3×5
16 = 2×2×2×2



Clicker Question #1

• We just saw that 15 is the first natural whose 
prime factorization has two different odd 
primes in it.  What is the second natural 
whose prime factorization has three different 
odd primes in it?

• (a) 165

• (b) 175

• (c) 231

• (d) 385



Answer #1

• We just saw that 15 is the first natural whose 
prime factorization has two different odd 
primes in it.  What is the second natural 
whose prime factorization has three different 
odd primes in it?

• (a) 165 = 3*5*11 (first is 105 = 3*5*7)

• (b) 175 = 5*5*7

• (c) 231 = 3*7*11

• (d) 385 = 5*7*11



Existence of a Factorization

• Proving the Fundamental Theorem requires 
two subproofs.  We need to prove that at 
least one factorization exists, and that any 
two factorizations of n have the same number 
of each prime.

• The first part is fairly easy.  Let n be an 
arbitrary positive natural.  If n = 1 or if n is 
prime, we are done.  

• Otherwise n is composite.



Existence of a Factorization

• For n to be composite means by definition 
that there exist numbers x and y, each greater 
than 1, such that n = x × y.  Clearly x and y 
must each be smaller than n.

• If we can recursively get prime factorizations 
of x and y, all we need to do is to put the two 
factorizations together with another × sign, 
and we have a factorization of n.

• The recursion cannot go on forever because 
we keep factoring smaller numbers.



A Recursive Factoring Algorithm

• Here is some pseudo-Java code, using the 
natural data type.  

public void factor (natural n) {
// Prints prime factors in ascending   
          order, one per line
   if (n <= 1) return;
   natural d = 2;
   while (n % d != 0) {
      d++;
      if (d * d > n) d = n;}
   System.out.println (d);
   factor (n/d);
   return;}



A Recursive Factoring Algorithm

• The base of the recursion is when n is 0 or 1.

•  The method sets d to 2 and then increases it 
until it reaches a value that divides evenly into 
n.  (This has to happen eventually because n 
divides itself.)  

• Then it prints d, now the smallest prime 
divisor of n, and recurses on n/d.  

• Note that we use the “square root” trick -- if 
d gets bigger than the square root of n we 
jump straight to n.



Clicker Question #2

• If we call factor(450), which of these 
numbers will not be the argument of a later 
recursive call to factor?

• (a) 75

• (b) 25

• (c) 15

• (d) 5



Answer #2

• If we call factor(450), which of these 
numbers will not be the argument of a later 
recursive call to factor?

• (a) 75

• (b) 25

• (c) 15 (call sequence is 225, 75, 25, 5, 1)

• (d) 5



Why is Uniqueness a Problem?

• The problem with proving the uniqueness of 
factorization is that we have heard all our 
lives that the result is true.

• Consider the two numbers 17 × 19 × 23 × 
29 and 3 × 53 × 7 × 83, each of which is an 
odd number somewhere around 200,000.  

• We could calculate these two numbers and 
show that they are not equal, but why is it 
impossible that they be equal?



Why is Uniqueness a Problem?

• We’d like to say “3 divides the number on the 
right, but not the number on the left”.  The first is 
obvious, but the second assumes the uniqueness 
of factorization, which we have not yet proved!

• In this special case we can see that the decimal 
for the number on the right ends in 9, while the 
one for the number in the left does not.  We 
could also calculate the remainder mod 3 for the 
number on the left, which won’t be 0.  We will 
generalize this latter approach for our proof.



The Atomicity Lemma

• Remember that the word atomic comes 
from the Greek for “indivisible”.  

• The Atomicity Lemma says that if a 
prime number p divides a product a × b, then 
p divides either a or b (or both).  

• That is, p is “atomic” in that its property of 
dividing a × b cannot be split -- it cannot 
partially divide a and partially divide b.



Clicker Question #3

• Let D be any set of two or more dogs.  We 
say that a subset X of D is “atomic” if for any 
two sets Y and Z, if X ⊆ Y ∪ Z, we must have 
that either X ⊆ Y or X ⊆ Z (or both).  Which 
subsets of D are atomic?

• (a) all subsets

• (b) only the empty set ∅

• (c) only sets with exactly one dog

• (d) ∅ and all sets with exactly one dog



Answer #3

• Let D be any set of two or more dogs.  We 
say that a subset X of D is “atomic” if for any 
two sets Y and Z, if X ⊆ Y ∪ Z, we must have 
that either X ⊆ Y or X ⊆ Z (or both).  Which 
subsets of D are atomic?

• (a) all subsets

• (b) only the empty set ∅

• (c) only sets with exactly one dog

• (d) ∅ and all sets with exactly one dog



Proving the Atomicity Lemma

• We will prove this lemma by contrapositive.  

• We let p, a, and b be arbitrary, assume that p 
is prime, and assume that p does not divide 
either a or b.  

• If we can prove that p then also does not 
divide a × b, we will have the contrapositive.

D(p, ab) → (D(p, a) ∨ D(p, b)) 
↔

(¬D(p, a) ∧ ¬D(p, b)) → ¬D(p, ab)



Proving the Atomicity Lemma

• If a prime number p does not divide either a or 
b, it must be relatively prime to each.  

• So by the Inverse Theorem, there must exist 
numbers x and y such that ax ≡ 1 (mod p) and by 
≡ 1 (mod p). 

•  We can just multiply to get axby ≡ 1 (mod p).

• Now we know that p cannot divide ab, because 
then we would have ab ≡ 0 (mod p) and thus 
axby ≡ 0 (mod p), contradicting axby ≡ 1 (mod p).



Finishing the FTA Proof

• Suppose now that a positive natural n has 
two different prime factorizations:                         
n = p1 × ... × pk = q1 × ... qm.  

• We want to show that k = m and that the p’s 
include the same number of each prime as 
the q’s.

• We begin by cancelling any prime that occurs 
both among the p’s and among the q’s.



Justifying Cancellation

• To be able to cancel like this we must know 
that (xz = yz) → (x = y) whenever z is 
positive.  

• To do this we prove the contrapositive (x ≠ 
y) → (xz ≠ yz), which we can do be letting x 
be the smaller of x and y and writing y = x + 
c for some positive c. 

•  Then yz = xz + cz, and thus xz ≠ yz because 
cz, the product of two positive numbers, is 
positive.



Finishing the FTA Proof

• So we can cancel any primes that appear on both 
sides.  This continues until one of three things 
happen:

• (1) Everything has been cancelled on both sides 
(which will happen if the factorizations are the same).

• (2) We empty one side with one or more primes left 
on the other (impossible since the empty side is 1).

• (3) We have a prime p on one side, which divides a 
product of one or more primes on the other.  This 
last case contradicts the Atomicity Lemma.


