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Modular Arithmetic

• Arithmetic on Congruence Classes

• Verifying the Operations

• The Euclidean Algorithm

• Proving that the EA Gives the GCD

• The Inverse Algorithm

• Practicality for Large Inputs



Arithmetic on Congruence Classes

• We’ve seen that the congruence relation 
for any modulus is an equivalence relation, 
meaning that it divides the naturals into 
equivalence classes called congruence 
classes.  

• Modulo 3, for example, there are three 
classes: {0, 3, 6, 9,...}, {1, 4, 7, 10,...}, and {2, 5, 8, 
11,...}.  Modulo k, there are k classes.

• We’ll now develop a new kind of arithmetic 
by treating these classes as numbers.  



Arithmetic on Classes

• We can add classes -- if I take any two 
numbers in {1, 4, 7,...}, for example, their sum 
will be in {2, 5, 8,...}.  

• There is an addition operation on classes, 
because it doesn’t matter which element of 
the input classes we take as long as we only 
care about the class of the output.

• The same thing works for multiplication, as 
we’ll soon show.  We can add, subtract, and 
multiply classes.  But division is different!



Verifying the Operations

• The statement that we can add classes can be 
written in logical symbols as follows: 

• ∀m: ∀a: ∀b: ∀c: ∀d: (a ≣ b (mod m)) ⋀ (c ≣ d 
(mod m) → (a+c ≣ b+d (mod m)). 

• This says that if we change elements of the 
input classes in any possible way, the output 
class does not change.



The Proof for Addition

• To prove this, we let m, a, b, c, and d be 
arbitrary and assume that a ≣ b and c ≣ d 
modulo m.  

• This means that a = b + im and c = d + jm for 
some integers (possibly negative) i and j.  

• Then by arithmetic, adding the two 
equations, we get a + c = b + d + (i + j)m, and 
we have shown that a + c ≣ b + d (mod m).



The Other Operations

• The multiplication statement and proof are 
the same.  Starting from the same 
assumptions, we compute that ac = (b + im)
(d + jm) = bd + (id + bj + ijm)m, and so we 
know that ac ≣ bd (mod m).

• Subtraction works just like addition.  But 
what about division?



Greatest Common Divisors

• The greatest common divisor of two 
naturals is the largest number that divides 
both of them.  For example, gcd(9, 15) = 3.  

• Two naturals are relatively prime if their 
gcd is 1.  A prime number like 7 is relatively 
prime to any natural except one of its own 
multiples.  Composite numbers, like 9 and 25, 
can be relatively prime to each other.



Clicker Question #1

• A set of more than two naturals is called 
pairwise relatively prime if every pair 
of two different naturals taken from the set 
are relatively prime.  Which of these sets is 
not pairwise relatively prime?

• (a) {13, 15, 21}

• (b) {7, 11, 25}

• (c) {9, 10, 11}

• (d) {8, 49, 65}



Answer #1

• A set of more than two naturals is called 
pairwise relatively prime if every pair 
of two different naturals taken from the set 
are relatively prime.  Which of these sets is 
not pairwise relatively prime?

• (a) {13, 15, 21} (3 divides both 15 and 21)

• (b) {7, 11, 25}

• (c) {9, 10, 11}

• (d) {8, 49, 65}



The Euclidean Algorithm

• The Euclidean Algorithm takes two 
positive naturals as input and determines 
their gcd, and hence whether they are 
relatively prime.  

• The idea is simple -- at any time during the 
algorithm you have two naturals.  You divide 
the smaller one into the larger and take the 
remainder.  Your two new numbers are the 
smaller one and the remainder.

• You keep going until one number is 0.



Euclidean Algorithm Examples

• If we start with 14 and 8, we take 14 % 8 = 6, 
and our next pair is 8 and 6.  Then 8 % 6 = 2, 
so we have 6 and 2.  Finally 6 % 2 = 0.  The 
gcd is the last number we have before we get 
0 -- in this case gcd(14, 8) = 2.

• But if we start with 17 and 7, we take 17 % 7 
= 3, so our next pair is 7 and 3.  Then 7 % 3 = 
1, so we have 3 and 1.  Finally 3 % 1 = 0.  The 
last number before 0 was 1, so gcd(17, 7) = 1 
and we see that 17 and 7 are relatively prime.



Some Longer EA Examples

• We can carry out this procedure on 
any two numbers, without a computer 
or calculator as long as we can divide 
one natural by another.

• The procedure has to stop at some 
point because the numbers only get 
smaller (though proving that will take 
induction).  Sometimes there are big 
jumps downward, sometimes (as at 
right) we take a while to get to 0.

119 % 65 = 54
65 % 54 = 11
54 % 11 = 10
11 % 10 = 1
10 % 1 = 0 
gcd(119, 65) = 1

610 % 233 = 144
233 % 144 = 89
144 % 89 = 55
89 % 55 = 34
55 % 34 = 21
34 % 21 = 13
21 % 13 = 8
13 % 8 = 5
8 % 5 = 3
5 % 3 = 2
3 % 2 = 1
2 % 1 = 0
gcd(610, 233) = 1



Some More EA Examples

119 % 77 = 42
77 % 42 = 35
42 % 35 = 7
35 % 7 = 0
gcd(119, 77) = 7

1001 % 418 = 165
418 % 165 = 88
165 % 88 = 77
88 % 77 = 11
gcd(1001, 418) = 11 

1001 % 417 = 167
417 % 167 = 83
167 % 83 = 1
83 % 1 = 0
gcd(1001, 417) = 1

1001 % 416 = 169
416 % 169 = 78
169 % 78 = 13
78 % 13 = 0
gcd(1001, 416) = 13

1001 % 415 = 171
415 % 171 = 73
171 % 73 = 25
73 % 25 = 23
25 % 23 = 2
23 % 2 = 1
2 % 1 = 0
gcd(1001, 415) = 1



Proving that EA Gives the GCD
• How can we be confident that this algorithm 

actually provides the gcd?

• Let a and b be the two original numbers, and 
let g be the real gcd.  Let r be the result of 
the Euclidean Algorithm, the last number 
before 0. 

• Since g divides both a and b, it also divides 
the third number, which is a - qb for some 
number q.  By the same reasoning, g divides 
all the numbers that occur in the algorithm, 
and so divides r.



Proving that EA Gives the GCD

• The next-to-last number z in the algorithm is 
a multiple of r, since dividing it by r gave 0 
remainder.  Look at the number before -- 
dividing it by z gave r, so it is zq + r for some 
q, and hence also a multiple of r.  Working 
backward, every number in the EA is a 
multiple of r, including the original a and b.

• So r is a common divisor, and the greatest 
common divisor g divides it -- this can only 
be true if r and g are the same number.



Multiplicative Inverses

• Now back to division.  What would it mean 
to divide one class by another?

• When we divide one real number x by 
another (nonzero) real number y, we are 
multiplying x by the multiplicative 
inverse of y, written as y-1 or 1/y.  

• Multiplication by y and multiplication by y-1 
are inverse functions, because one 
undoes the other.



The Inverse of a Class

• So dividing one congruence class [x] by 
another class [y] means finding a class [z] 
such that multiplication by [z] undoes 
multiplication by [y] -- then the class “[x]/[y]” 
can be defined as [x][z] or [xz].  

• For example, modulo 7, [3] has the inverse 
[5], because [3 × 5] = [15] = [1], since 15 ≡ 1 
(mod 7).



Clicker Question #2

• We have just defined x to be “the inverse of 
y, mod m” if xy is congruent to 1, modulo m. 
Which of the following statements is not 
true?

• (a) 7 is its own inverse, mod 16

• (b) 7 is the inverse of 3, mod 10

• (c) 7 is the inverse of 10, mod 69

• (d) 7 is the inverse of 8, mod 19



Answer #2

• We have just defined x to be “the inverse of 
y, mod m” if xy is congruent to 1, modulo m. 
Which of the following statements is not 
true?

• (a) 7 is its own inverse, mod 16

• (b) 7 is the inverse of 3, mod 10

• (c) 7 is the inverse of 10, mod 69

• (d) 7 is the inverse of 8, mod 19 (7⋅8 = 56 ≡ -1)



The Inverse Theorem

• We don’t always have inverses, though, just as 
0 has no multiplicative inverse in the real 
numbers. 

•  The Inverse Theorem says that a number 
z has an inverse modulo m if and only if z and 
m are relatively prime.  

• The Euclidean Algorithm lets us test whether 
gcd(z, m) = 1, and with a little more work it 
will also let us prove the Inverse Theorem 
and find inverses when they exist.



Proving the Inverse Theorem

• First note that one half of the Inverse 
Theorem (gcd > 1 → no inverse) is easy to 
prove.  

• If z and m have a common divisor g that is 
greater than 1, then g will always divide az + 
bm for any integers a and b, and so g will 
divide anything congruent to az modulo m. 

• Since g doesn’t divide 1, [az] can’t be [1] and 
thus [z] has no inverse.



The Inverse Algorithm

• We prove the other half by finding the 
inverse when z and m are relatively prime. 

• First note that each of our equations in the 
Euclidean Algorithm, such as “z % m = y”, can 
be rewritten “z = km + y” for some natural k.  

• We can use these equations to write each of 
the numbers in the Euclidean Algorithm as a 
linear combination of z and m, that is, an 
expression of the form az + bm where a and 
b are integers. 



The Inverse Algorithm

• Since 1 is one of these numbers when z and 
m are relatively prime, we will wind up with 1 
= az + bm for some a and b.  

• But then we can see that az ≡ 1 (mod m) and 
thus [a] is the inverse of [z] modulo m.

• Let’s work this out in an example, to find the 
inverse of 65 modulo 119.



An Inverse Theorem Example
• We take the EA equations and rewrite them to 

express each new number in terms of the 
preceding two numbers.  Then we express each 
number as a linear combination of 119 and 65.  

• The first two are obvious.  For the third, we use 
the fact that 11 is 65 - 1×54 and make a new 
combination for 11 by subtracting the 
combination for 54 from the one for 65.

119 % 65 = 54
65 % 54 = 11
54 % 11 = 10
11 % 10 = 1
10 % 1 = 0

119 = 1×65 + 54
65 = 1×54 + 11
54 = 4×11 + 10
11 = 1×10 + 1
10 = 10×1 + 0

119 = 1×119 + 0×65
65 = 0×119 + 1×65
54 = 1×119 - 1×65
11 = -1×119 + 2×65
10 = 5×119 - 9×65
1 = -6×119 + 11×65



Continuing the Example

• To get a combination for 10, we use 10 = 54 - 
4×11 by subtracting four times the 
combination for 11 from the combination for 
54.

• We find that -6 is an inverse for 119 modulo 
65, and 11 an inverse for 65 modulo 119.

119 % 65 = 54
65 % 54 = 11
54 % 11 = 10
11 % 10 = 1
10 % 1 = 0

119 = 1×65 + 54
65 = 1×54 + 11
54 = 4×11 + 10
11 = 1×10 + 1
10 = 10×1 + 0

119 = 1×119 + 0×65
65 = 0×119 + 1×65
54 = 1×119 - 1×65
11 = -1×119 + 2×65
10 = 5×119 - 9×65
1 = -6×119 + 11×65



Clicker Question #3

• Suppose we are using the Inverse Algorithm 
to compute the inverse of 12, modulo 19.  
Our first two linear combinations are “19 = 
1⋅19 + 0⋅12” and “12 = 0⋅19 + 1⋅12”.  What 
is the third linear combination?

• (a) 1 = -5⋅19 + 8⋅12

• (b) -5 = 1⋅19 - 2⋅12

• (c) 7 = -1⋅19 + 2⋅12

• (d) 7 = 1⋅19 - 1⋅12



Answer #3

• Suppose we are using the Inverse Algorithm 
to compute the inverse of 12, modulo 19.  
Our first two linear combinations are “19 = 
1⋅19 + 0⋅12” and “12 = 0⋅19 + 1⋅12”.  What 
is the third linear combination?

• (a) 1 = -5⋅19 + 8⋅12

• (b) -5 = 1⋅19 - 2⋅12

• (c) 7 = -1⋅19 + 2⋅12

• (d) 7 = 1⋅19 - 1⋅12



Practicality for Large Inputs

• We have a general algorithm to test whether 
a number is prime, but it is wholly impractical 
for very large inputs.  

• If a number has 100 digits, we would have to 
check every possible prime divisor up to its 
square root, which would be a number of 
about 50 digits.  

• Since a sizable fraction of all such numbers 
are prime, this would take us eons even if we 
could test a trillion per second.



Practicality for Large Inputs

• There are better ways to test for 
primality, mentioned in CMPSCI 501. 

• The most practical one is randomized, and 
actually has a small chance of falsely claiming 
that a composite number is prime. 

• But factoring appears to be an even harder 
problem -- if I multiply two 100-digit primes 
together, there is no practical method known 
to get the factors back.



Practicality For Large Inputs

• By contrast, testing relative primality is very 
practical even for very large inputs (once you 
have a data structure to work with numbers 
too big for an int or a long).  

• We’ll see later in the course that on inputs 
with n digits, the Euclidean Algorithm takes 
O(n) time -- on inputs of 100 digits it will 
take a few hundred steps at worst.  The worst 
case is when the inputs are Fibonacci 
numbers, as in our example of 610 and 233.


