
CMPSCI 250: Introduction to
Computation

Lecture #13: Modular Arithmetic
David Mix Barrington
19 February 2014

Modular Arithmetic

• Arithmetic on Congruence Classes

• Verifying the Operations

• The Euclidean Algorithm

• Proving that the EA Gives the GCD

• The Inverse Algorithm

• Practicality for Large Inputs

Arithmetic on Congruence Classes

• We’ve seen that the congruence relation
for any modulus is an equivalence relation,
meaning that it divides the naturals into
equivalence classes called congruence
classes.

• Modulo 3, for example, there are three
classes: {0, 3, 6, 9,...}, {1, 4, 7, 10,...}, and {2, 5, 8,
11,...}. Modulo k, there are k classes.

• We’ll now develop a new kind of arithmetic
by treating these classes as numbers.

Arithmetic on Classes

• We can add classes -- if I take any two
numbers in {1, 4, 7,...}, for example, their sum
will be in {2, 5, 8,...}.

• There is an addition operation on classes,
because it doesn’t matter which element of
the input classes we take as long as we only
care about the class of the output.

• The same thing works for multiplication, as
we’ll soon show. We can add, subtract, and
multiply classes. But division is different!

Verifying the Operations

• The statement that we can add classes can be
written in logical symbols as follows:

• ∀m: ∀a: ∀b: ∀c: ∀d: (a ≣ b (mod m)) ⋀ (c ≣ d
(mod m) → (a+c ≣ b+d (mod m)).

• This says that if we change elements of the
input classes in any possible way, the output
class does not change.

The Proof for Addition

• To prove this, we let m, a, b, c, and d be
arbitrary and assume that a ≣ b and c ≣ d
modulo m.

• This means that a = b + im and c = d + jm for
some integers (possibly negative) i and j.

• Then by arithmetic, adding the two
equations, we get a + c = b + d + (i + j)m, and
we have shown that a + c ≣ b + d (mod m).

The Other Operations

• The multiplication statement and proof are
the same. Starting from the same
assumptions, we compute that ac = (b + im)
(d + jm) = bd + (id + bj + ijm)m, and so we
know that ac ≣ bd (mod m).

• Subtraction works just like addition. But
what about division?

Greatest Common Divisors

• The greatest common divisor of two
naturals is the largest number that divides
both of them. For example, gcd(9, 15) = 3.

• Two naturals are relatively prime if their
gcd is 1. A prime number like 7 is relatively
prime to any natural except one of its own
multiples. Composite numbers, like 9 and 25,
can be relatively prime to each other.

Clicker Question #1

• A set of more than two naturals is called
pairwise relatively prime if every pair
of two different naturals taken from the set
are relatively prime. Which of these sets is
not pairwise relatively prime?

• (a) {13, 15, 21}

• (b) {7, 11, 25}

• (c) {9, 10, 11}

• (d) {8, 49, 65}

Answer #1

• A set of more than two naturals is called
pairwise relatively prime if every pair
of two different naturals taken from the set
are relatively prime. Which of these sets is
not pairwise relatively prime?

• (a) {13, 15, 21} (3 divides both 15 and 21)

• (b) {7, 11, 25}

• (c) {9, 10, 11}

• (d) {8, 49, 65}

The Euclidean Algorithm

• The Euclidean Algorithm takes two
positive naturals as input and determines
their gcd, and hence whether they are
relatively prime.

• The idea is simple -- at any time during the
algorithm you have two naturals. You divide
the smaller one into the larger and take the
remainder. Your two new numbers are the
smaller one and the remainder.

• You keep going until one number is 0.

Euclidean Algorithm Examples

• If we start with 14 and 8, we take 14 % 8 = 6,
and our next pair is 8 and 6. Then 8 % 6 = 2,
so we have 6 and 2. Finally 6 % 2 = 0. The
gcd is the last number we have before we get
0 -- in this case gcd(14, 8) = 2.

• But if we start with 17 and 7, we take 17 % 7
= 3, so our next pair is 7 and 3. Then 7 % 3 =
1, so we have 3 and 1. Finally 3 % 1 = 0. The
last number before 0 was 1, so gcd(17, 7) = 1
and we see that 17 and 7 are relatively prime.

Some Longer EA Examples

• We can carry out this procedure on
any two numbers, without a computer
or calculator as long as we can divide
one natural by another.

• The procedure has to stop at some
point because the numbers only get
smaller (though proving that will take
induction). Sometimes there are big
jumps downward, sometimes (as at
right) we take a while to get to 0.

119 % 65 = 54
65 % 54 = 11
54 % 11 = 10
11 % 10 = 1
10 % 1 = 0
gcd(119, 65) = 1

610 % 233 = 144
233 % 144 = 89
144 % 89 = 55
89 % 55 = 34
55 % 34 = 21
34 % 21 = 13
21 % 13 = 8
13 % 8 = 5
8 % 5 = 3
5 % 3 = 2
3 % 2 = 1
2 % 1 = 0
gcd(610, 233) = 1

Some More EA Examples

119 % 77 = 42
77 % 42 = 35
42 % 35 = 7
35 % 7 = 0
gcd(119, 77) = 7

1001 % 418 = 165
418 % 165 = 88
165 % 88 = 77
88 % 77 = 11
gcd(1001, 418) = 11

1001 % 417 = 167
417 % 167 = 83
167 % 83 = 1
83 % 1 = 0
gcd(1001, 417) = 1

1001 % 416 = 169
416 % 169 = 78
169 % 78 = 13
78 % 13 = 0
gcd(1001, 416) = 13

1001 % 415 = 171
415 % 171 = 73
171 % 73 = 25
73 % 25 = 23
25 % 23 = 2
23 % 2 = 1
2 % 1 = 0
gcd(1001, 415) = 1

Proving that EA Gives the GCD
• How can we be confident that this algorithm

actually provides the gcd?

• Let a and b be the two original numbers, and
let g be the real gcd. Let r be the result of
the Euclidean Algorithm, the last number
before 0.

• Since g divides both a and b, it also divides
the third number, which is a - qb for some
number q. By the same reasoning, g divides
all the numbers that occur in the algorithm,
and so divides r.

Proving that EA Gives the GCD

• The next-to-last number z in the algorithm is
a multiple of r, since dividing it by r gave 0
remainder. Look at the number before --
dividing it by z gave r, so it is zq + r for some
q, and hence also a multiple of r. Working
backward, every number in the EA is a
multiple of r, including the original a and b.

• So r is a common divisor, and the greatest
common divisor g divides it -- this can only
be true if r and g are the same number.

Multiplicative Inverses

• Now back to division. What would it mean
to divide one class by another?

• When we divide one real number x by
another (nonzero) real number y, we are
multiplying x by the multiplicative
inverse of y, written as y-1 or 1/y.

• Multiplication by y and multiplication by y-1
are inverse functions, because one
undoes the other.

The Inverse of a Class

• So dividing one congruence class [x] by
another class [y] means finding a class [z]
such that multiplication by [z] undoes
multiplication by [y] -- then the class “[x]/[y]”
can be defined as [x][z] or [xz].

• For example, modulo 7, [3] has the inverse
[5], because [3 × 5] = [15] = [1], since 15 ≡ 1
(mod 7).

Clicker Question #2

• We have just defined x to be “the inverse of
y, mod m” if xy is congruent to 1, modulo m.
Which of the following statements is not
true?

• (a) 7 is its own inverse, mod 16

• (b) 7 is the inverse of 3, mod 10

• (c) 7 is the inverse of 10, mod 69

• (d) 7 is the inverse of 8, mod 19

Answer #2

• We have just defined x to be “the inverse of
y, mod m” if xy is congruent to 1, modulo m.
Which of the following statements is not
true?

• (a) 7 is its own inverse, mod 16

• (b) 7 is the inverse of 3, mod 10

• (c) 7 is the inverse of 10, mod 69

• (d) 7 is the inverse of 8, mod 19 (7⋅8 = 56 ≡ -1)

The Inverse Theorem

• We don’t always have inverses, though, just as
0 has no multiplicative inverse in the real
numbers.

• The Inverse Theorem says that a number
z has an inverse modulo m if and only if z and
m are relatively prime.

• The Euclidean Algorithm lets us test whether
gcd(z, m) = 1, and with a little more work it
will also let us prove the Inverse Theorem
and find inverses when they exist.

Proving the Inverse Theorem

• First note that one half of the Inverse
Theorem (gcd > 1 → no inverse) is easy to
prove.

• If z and m have a common divisor g that is
greater than 1, then g will always divide az +
bm for any integers a and b, and so g will
divide anything congruent to az modulo m.

• Since g doesn’t divide 1, [az] can’t be [1] and
thus [z] has no inverse.

The Inverse Algorithm

• We prove the other half by finding the
inverse when z and m are relatively prime.

• First note that each of our equations in the
Euclidean Algorithm, such as “z % m = y”, can
be rewritten “z = km + y” for some natural k.

• We can use these equations to write each of
the numbers in the Euclidean Algorithm as a
linear combination of z and m, that is, an
expression of the form az + bm where a and
b are integers.

The Inverse Algorithm

• Since 1 is one of these numbers when z and
m are relatively prime, we will wind up with 1
= az + bm for some a and b.

• But then we can see that az ≡ 1 (mod m) and
thus [a] is the inverse of [z] modulo m.

• Let’s work this out in an example, to find the
inverse of 65 modulo 119.

An Inverse Theorem Example
• We take the EA equations and rewrite them to

express each new number in terms of the
preceding two numbers. Then we express each
number as a linear combination of 119 and 65.

• The first two are obvious. For the third, we use
the fact that 11 is 65 - 1×54 and make a new
combination for 11 by subtracting the
combination for 54 from the one for 65.

119 % 65 = 54
65 % 54 = 11
54 % 11 = 10
11 % 10 = 1
10 % 1 = 0

119 = 1×65 + 54
65 = 1×54 + 11
54 = 4×11 + 10
11 = 1×10 + 1
10 = 10×1 + 0

119 = 1×119 + 0×65
65 = 0×119 + 1×65
54 = 1×119 - 1×65
11 = -1×119 + 2×65
10 = 5×119 - 9×65
1 = -6×119 + 11×65

Continuing the Example

• To get a combination for 10, we use 10 = 54 -
4×11 by subtracting four times the
combination for 11 from the combination for
54.

• We find that -6 is an inverse for 119 modulo
65, and 11 an inverse for 65 modulo 119.

119 % 65 = 54
65 % 54 = 11
54 % 11 = 10
11 % 10 = 1
10 % 1 = 0

119 = 1×65 + 54
65 = 1×54 + 11
54 = 4×11 + 10
11 = 1×10 + 1
10 = 10×1 + 0

119 = 1×119 + 0×65
65 = 0×119 + 1×65
54 = 1×119 - 1×65
11 = -1×119 + 2×65
10 = 5×119 - 9×65
1 = -6×119 + 11×65

Clicker Question #3

• Suppose we are using the Inverse Algorithm
to compute the inverse of 12, modulo 19.
Our first two linear combinations are “19 =
1⋅19 + 0⋅12” and “12 = 0⋅19 + 1⋅12”. What
is the third linear combination?

• (a) 1 = -5⋅19 + 8⋅12

• (b) -5 = 1⋅19 - 2⋅12

• (c) 7 = -1⋅19 + 2⋅12

• (d) 7 = 1⋅19 - 1⋅12

Answer #3

• Suppose we are using the Inverse Algorithm
to compute the inverse of 12, modulo 19.
Our first two linear combinations are “19 =
1⋅19 + 0⋅12” and “12 = 0⋅19 + 1⋅12”. What
is the third linear combination?

• (a) 1 = -5⋅19 + 8⋅12

• (b) -5 = 1⋅19 - 2⋅12

• (c) 7 = -1⋅19 + 2⋅12

• (d) 7 = 1⋅19 - 1⋅12

Practicality for Large Inputs

• We have a general algorithm to test whether
a number is prime, but it is wholly impractical
for very large inputs.

• If a number has 100 digits, we would have to
check every possible prime divisor up to its
square root, which would be a number of
about 50 digits.

• Since a sizable fraction of all such numbers
are prime, this would take us eons even if we
could test a trillion per second.

Practicality for Large Inputs

• There are better ways to test for
primality, mentioned in CMPSCI 501.

• The most practical one is randomized, and
actually has a small chance of falsely claiming
that a composite number is prime.

• But factoring appears to be an even harder
problem -- if I multiply two 100-digit primes
together, there is no practical method known
to get the factors back.

Practicality For Large Inputs

• By contrast, testing relative primality is very
practical even for very large inputs (once you
have a data structure to work with numbers
too big for an int or a long).

• We’ll see later in the course that on inputs
with n digits, the Euclidean Algorithm takes
O(n) time -- on inputs of 100 digits it will
take a few hundred steps at worst. The worst
case is when the inputs are Fibonacci
numbers, as in our example of 610 and 233.

