CMPSCI 250: Introduction to Computation

Lectures \#I0 and \#II: Partial Orders and
Equivalence Relations
David Mix Barrington
14 February 2014

Partial Orders, Eq. Relations

- Definition of Partial Orders and Total Orders
- The Division Relation and Other Examples
- Hasse Diagrams
- Definition of Equivalence Relations
- Examples and Their Graphs
- Partitions and the Partition Theorem
- Equivalence Classes Form a Partition

Definition of a Partial Order

- A partial order is a particular kind of binary relation on a set. Remember that R is a binary relation on a set A if $R \subseteq A \times A$, that is, if R is a set of ordered pairs where both elements of every pair are from A.
- Last time we used quantifiers to define four particular properties that a binary relation on a set might have.
- A relation is a partial order if and only if it is reflexive, antisymmetric, and transitive.

Properties of a Partial Order

- A relation R is reflexive if every element is related to itself -- in symbols, $\forall x: R(x, x)$.
- It is antisymmetric if the order of elements in a pair can never be reversed unless they are the same element -- in symbols, $\forall x: \forall y:(R(x, y) \wedge R(y$, $x)) \rightarrow(x=y)$.
- Finally, R is transitive if $\forall x: \forall y: \forall z:(R(x, y) \wedge$ $R(y, z)) \rightarrow R(x, z)$. This says that a chain of pairs in the relation must be accompanied by a single pair whose elements are the start and end of the chain.

Diagrams of Binary Relations

- If A is a finite set and R is a binary relation on A, we can draw R in a diagram called a
 graph. We make a dot for each element of A, and draw an arrow from the dot for x8 to the dot for y whenever $R(x, y)$ is true. If $R(x, x)$, we draw a loop from the dot for x to itself.

Seeing the Properties

- The properties are perhaps easier to see in one of these diagrams.
- A relation is reflexive if
 its diagram has a loop at every dot.
- It is symmetric if every arrow (except loops) has a matching opposite arrow.

Seeing the Properties

- It is antisymmetric if there are never two arrows in opposite directions between two different nodes.
- It is transitive if for every path of arrows (a chain where the start of each arrow is the end of the previous one) there is a single arrow from the start of the chain to the end.

Clicker Question \#I

- Which property does the diagrammed relation have?
- (a) reflexive
- (b) antireflexive
- (c) symmetric
- (d) transitive

Answer \#I

- Which property does the diagrammed relation have?
- (a) reflexive
- (b) antireflexive

- (c) symmetric
- (d) transitive

Total Orders

- When we studied sorting in CMPSCI I87, we assumed that the elements to be sorted came from a type with a defined comparison operation.
- Given any two elements in the set, we can determine which is "smaller" according to the definition. (In Java the type would have a compareTo method or have an associated Comparator object.)

Total Orders

- The "smaller" relation is not normally reflexive, but the related "smaller or equal to" relation is.
- Both these relations are normally antisymmetric, unless it is possible for the comparison relations to have ties between different elements.
- And both relations are transitive, just as \leq is on numbers.

Total Orders

- But ordered sets have an additional property called being total, which we write in symbols as $\forall x: \forall y: R(x, y) \vee R(y, x)$.
- In general a partial order need not have this property -- two distinct elements could be incomparable.
- For example, the equality relation E, defined by $E(x, y) \leftrightarrow(x=y)$, is reflexive, antisymmetric, and transitive, but any two distinct elements are incomparable.

The Division Relation

- Here's another example of a partial order that is not total.
- Our base set will be the natural numbers $\{0$, $I, 2,3, \ldots\}$, and we define the division relation D so that $D(x, y)$ means " x divides into y without remainder".
- In symbols, $D(x, y)$ means $\exists z: x \cdot z=y$. (Here we use the dot operator • for multiplication.)

The Division Relation

- Any natural divides 0 , but 0 divides only itself. $D(I, y)$ is always true. $D(2, y)$ is true for even y's (including 0) but not for odd y's. $\mathrm{D}(100, x)$ is true if and only if the decimal for x ends in at least two 0's.
- In Excursion 3.2 the text looks at some tricks to determine whether $D(k, y)$ is true for some particular small values of k.

Division is a Partial Order

- It's easy to prove that D is a partial order.
- $D(x, x)$ is always true because we can take z to be I and $x \cdot I=x$.
- If $D(x, y)$ and $D(y, x)$ are both true, x must equal y because $D(x, y)$ implies that $x \leq y$ (unless x or y is 0).
- And if $D(x, y)$ and $D(y, z)$, then there exist naturals u and v such that $x \cdot u=y$ and $y \cdot v=$ z, and then we see that $x \cdot(u \cdot v)=z$.

More Partial Order Examples

- There are several easily defined partial orders on strings.
- We say that u is a prefix of v if $\exists w$: $u w=v$. (Here we write concatenation as algebraic multiplication.) We say u is a suffix of v if $\exists w$: $w u=v$. And u is a substring of v if $\exists w$: $\exists z: w u z=v$.
- It's easy to check that each of these relations is reflexive, antisymmetric, and transitive.

More Partial Order Examples

- Inclusion on sets is another partial order, as $X \subseteq X, X \subseteq Y$ and $Y \subseteq X$ imply $X=Y$, and $X \subseteq$ Y and $Y \subseteq Z$ imply $X \subseteq Z$.
- The subclass relation on Java classes is a partial order, since every class is a subclass of itself, two different classes can never each be subclasses of the other, and a subclass of a subclass is a subclass.

More Partial Order Examples

- We represent this relation by an object hierarchy diagram in the form of a tree.
- One class is a subclass of another if we can trace a path of extends relationships in the diagram from the subclass
 up to the superclass.

Hasse Diagrams

- We make a Hasse diagram by making a dot for each element of the set, and making lines so that $R(x, y)$ is true if and only if there is a path from x up to y.
- (Relative position of points in a graph usually doesn't matter, but here it does.)

Hasse Diagram

- Starting from the graph of a partial order, we make a Hasse diagram as follows.
- We first delete the loops.
- We then position the does so the all arrows go upward.
- Finally we delete arrows that are implied by transitivity
 Inclusion on Sets from other arrows.

The Hasse Diagram Theorem

- A Hasse diagram is a convenient way to represent a partial order if we can make one.
- But if I am just given R and told that it is a partial order, can I always make a Hasse diagram for it?
- The potential problem comes with the rule that the points must be arranged so that every arrow goes upward.

The Hasse Diagram Theorem

- The Hasse Diagram Theorem says that any finite partial order is the "path-below" relation of some Hasse diagram, and the "path-below" relation of any Hasse diagram is a partial order.
- The second of these two statements is easy to prove -- we just have to check that the path-below relation is reflexive, antisymmetric, and transitive.
- The text proves the first statement -- we'll prove it later using mathematical induction.

Defining an Equivalence Relation

- We have been looking at partial orders, which are reflexive, antisymmetric, and transitive. Now we look at equivalence relations: binary relations on a set that are reflexive, symmetric, and transitive.
- Recall the definitions: R is reflexive if $\forall x$: $R(x, x), R$ is symmetric if $\forall x: \forall y: R(x, y) \rightarrow$ $R(y, x))$, and R is transitive if $\forall x: \forall y: \forall z$: $(R(x, y) \wedge R(y, z)) \rightarrow R(x, z)$.

Defining an Equivalence Relation

- You should be familiar with these properties of the equality relation: " $x=x$ " is always true, from " $x=y$ " we can get " $y=x$ ", and we know that if $x=y$ and $y=z$, then $x=z$. The idea of equivalence relations is to formalize the property of acting like equality in this way.
- To prove that a relation is an equivalence relation, we formally need to use the Rule of Generalization, though we often skip steps if they are obvious.

Some Equivalence Relations

- If A is any set, we can define the universal relation U on A to always be true. Formally, U is the entire $\operatorname{set} A \times A$ consisting of all possible ordered pairs.
- Of course $U(x, x)$ is always true, and the implications in the definitions of symmetry and transitivity are always true because their conclusions are true.
- The always false relation $\neg \mathrm{U}($ or $\varnothing)$ is symmetric and transitive but not reflexive.

More Equivalence Relations

- The parity relation on naturals is perhaps more interesting. We define $P(i, j)$ to be true if i and j are either both even or both odd. Later we'll call this "being congruent modulo 2 " and we'll define "being congruent modulo n " in general.
- Any relation of the form " x and y are the same in this respect" will normally be reflexive, symmetric, and transitive, and thus be an equivalence relation.

Clicker Question \#2

- Let S be the set of the fifty states in the United States. Which of the following is not an equivalence relation?
- (a) $A=\{(x, y)$: states x and y became states in the same year\}
- (b) $B=\{(x, y)$: states x and y are both states $\}$
- (c) $C=\{(x, y)$: states x and y are either equal or share a land border, or both\}
- (d) $D=\{(x, x)$: state x is a state $\}$

Answer \#2

- Let S be the set of the fifty states in the United States. Which of the following is not an equivalence relation?
- (a) $A=\{(x, y)$: states x and y became states in the same year\}
- (b) $B=\{(x, y)$: states x and y are both states $\}$
- (c) $C=\{(x, y)$: states x and y are either equal or share a land border, or both\} (not transitive)
- (d) $D=\{(x, x)$: state x is a state $\}$

Graphs of Equivalence Relations

- What happens when we draw the diagram of an equivalence relation?
- Because it is reflexive, we have a loop on every vertex, but we can leave those out for clarity. The arrows are bidirectional because the relation is symmetric.
- The effect of transitivity on the diagram is a bit harder to see.

Complete Graphs

- If we have a set of points that have some connection from each point to each other point, transitivity forces us to have all possible direct connections among those points.
- A graph with all possible undirected edges is called a complete graph on its points. The graph of an equivalence relation has a complete graph for each connected component.

Partitions

- We've claimed a characterization of the graph of any equivalence relation in terms of complete graphs. Let's now prove that this characterization is correct -- we will need a new definition.
- If A is any set, a partition of A is a set of subsets of A-- a set $P=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ where (1) each S_{i} is a subset of A, (2) the union of all the Si's is A, and (3) the sets are pairwise disjoint -- $\forall \mathrm{i}: \forall \mathrm{j}:(\mathrm{i} \neq \mathrm{j}) \rightarrow\left(\mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=\varnothing\right)$.

Clicker Question \#3

- Let D be the set \{Cardie, Duncan, Jack, Nala\}. Which of these sets of sets is not a partition of D ?
- (a) \{\{Nala, Jack\}, \{Cardie\}, \{Nala, Duncan\}\}
- (b) $\{\{$ Nala $\},\{$ Jack $\},\{$ Duncan, Cardie $\}\}$
- (c) $\{\{$ Nala, Duncan, Cardie, Jack $\}$
- (d) \{\{Cardie, Nala, Jack\}, \{Duncan\}\}

Answer \#3

- Let D be the set \{Cardie, Duncan, Jack, Nala\}. Which of these sets of sets is not a partition of D ?
- (a) \{\{Nala, Jack\}, \{Cardie\}, \{Nala, Duncan\}\}
- (b) $\{\{\mathrm{Nala}\},\{$ Jack $\},\{$ Duncan, Cardie $\}\}$
- (c) $\{\{\mathrm{Nala}$, Duncan, Cardie, Jack $\}$
- (d) \{\{Cardie, Nala, Jack\}, \{Duncan\}\}

The Partition Theorem

- The Partition Theorem relates equivalence relations to partitions. It says that a relation is an equivalence relation if and only if it is the "same-set" relation of some partition. In symbols, the same-set relation of P is given by the predicate $\operatorname{SS}(x, y)$ defined to be true if $\exists i:\left(x \in S_{i}\right) \wedge\left(y \in S_{i}\right)$.
- So we need to get a partition from any equivalence relation, and an equivalence relation from any partition.

"Same-Set" is an E.R.

- Let $P=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ be a partition of A and let SS be its same set relation. We need to show that SS is an equivalence relation.
- It is easy to check that SS is reflexive, symmetric, and transitive by working with the definition. We'll look at this in Discussion \#4 on Monday.

Equivalence Classes

- If R is an equivalence relation on A, and x is any element of A, we define the equivalence class of x, written $[x]$, as the set $\{y: R(x, y)\}$, that is, the set of elements of A that are related to x by R.
- The universal relation U has a single equivalence class consisting of all the elements. The equality relation has a separate equivalence class for each element.

Equivalence Classes

- In the parity relation, the set of even numbers forms one equivalence class and the set of odd numbers forms another.
- If we let A be the set of people in the USA, and define $R(x, y)$ to mean " x and y are legal residents of the same state", we get fifty equivalence classes, one for each state. One of them is $\{x: x$ is a legal resident of Massachusetts\}.

The Classes Form a Partition

- To finish the proof of the Partition Theorem, we must prove that if R is any equivalence relation on A, the set of equivalence classes forms a partition.
- We'll do this with quantifier proof rules in Discussion \#4 on Tuesday.

