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Partial Orders, Eq. Relations

• Definition of Partial Orders and Total Orders

• The Division Relation and Other Examples

• Hasse Diagrams

• Definition of Equivalence Relations

• Examples and Their Graphs

• Partitions and the Partition Theorem

• Equivalence Classes Form a Partition



Definition of a Partial Order

• A partial order is a particular kind of 
binary relation on a set.  Remember that R is 
a binary relation on a set A if R ⊆ A × A, 
that is, if R is a set of ordered pairs where 
both elements of every pair are from A.

• Last time we used quantifiers to define four 
particular properties that a binary relation on 
a set might have.  

• A relation is a partial order if and only if it is 
reflexive, antisymmetric, and transitive.



Properties of a Partial Order

• A relation R is reflexive if every element is 
related to itself -- in symbols, ∀x: R(x, x).  

• It is antisymmetric if the order of elements in 
a pair can never be reversed unless they are the 
same element -- in symbols, ∀x: ∀y: (R(x, y) ∧ R(y, 
x)) → (x = y). 

•  Finally, R is transitive if ∀x: ∀y: ∀z: (R(x, y) ∧ 
R(y, z)) → R(x, z).  This says that a chain of pairs in 
the relation must be accompanied by a single pair 
whose elements are the start and end of the chain.



Diagrams of Binary Relations

• If A is a finite set and R is a 
binary relation on A, we can 
draw R in a diagram called a 
graph.  We make a dot for 
each element of A, and draw 
an arrow from the dot for x 
to the dot for y whenever 
R(x, y) is true.  If R(x, x), we 
draw a loop from the dot for 
x to itself.
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Seeing the Properties

• The properties are 
perhaps easier to see in 
one of these diagrams. 

• A relation is reflexive if 
its diagram has a loop at 
every dot.  

• It is symmetric if every 
arrow (except loops) 
has a matching opposite 
arrow.  



Seeing the Properties

• It is antisymmetric if there are 
never two arrows in opposite 
directions between two 
different nodes.  

• It is transitive if for every path 
of arrows (a chain where the 
start of each arrow is the end 
of the previous one) there is a 
single arrow from the start of 
the chain to the end.



Clicker Question #1

• Which property does the 
diagrammed relation have?

• (a) reflexive

• (b) antireflexive

• (c) symmetric

• (d) transitive



Answer #1

• Which property does the 
diagrammed relation have?

• (a) reflexive

• (b) antireflexive

• (c) symmetric

• (d) transitive



Total Orders

• When we studied sorting in CMPSCI 187, 
we assumed that the elements to be sorted 
came from a type with a defined comparison 
operation.  

• Given any two elements in the set, we can 
determine which is “smaller” according to the 
definition.  (In Java the type would have a 
compareTo method or have an associated 
Comparator object.)



Total Orders

• The “smaller” relation is not normally 
reflexive, but the related “smaller or equal to” 
relation is.  

• Both these relations are normally 
antisymmetric, unless it is possible for the 
comparison relations to have ties between 
different elements.  

• And both relations are transitive, just as ≤ is 
on numbers.



Total Orders

• But ordered sets have an additional property 
called being total, which we write in symbols 
as ∀x: ∀y: R(x, y) ∨ R(y, x).  

• In general a partial order need not have this 
property -- two distinct elements could be 
incomparable.  

• For example, the equality relation E, defined by 
E(x, y) ↔ (x = y), is reflexive, antisymmetric, and 

transitive, but any two distinct elements are 
incomparable.



The Division Relation

• Here’s another example of a partial order 
that is not total.  

• Our base set will be the natural numbers {0, 
1, 2, 3,...}, and we define the division 
relation D so that D(x, y) means “x divides 
into y without remainder”.  

• In symbols, D(x, y) means ∃z: x⋅z = y.  (Here 
we use the dot operator ⋅ for multiplication.)



The Division Relation

• Any natural divides 0, but 0 divides only itself.  
D(1, y) is always true. D(2, y) is true for even 
y’s (including 0) but not for odd y’s.  D(100, x) 
is true if and only if the decimal for x ends in 
at least two 0’s.  

• In Excursion 3.2 the text looks at some tricks 
to determine whether D(k, y) is true for 
some particular small values of k.



Division is a Partial Order

• It’s easy to prove that D is a partial order.  

• D(x, x) is always true because we can take z 
to be 1 and x ⋅ 1 = x.  

• If D(x, y) and D(y, x) are both true, x must 
equal y because D(x, y) implies that x ≤ y 
(unless x or y is 0).  

• And if D(x, y) and D(y, z), then there exist 
naturals u and v such that x⋅u = y and y⋅v = 
z, and then we see that x⋅(u⋅v) = z.



More Partial Order Examples

• There are several easily defined partial orders 
on strings.  

• We say that u is a prefix of v if ∃w: uw = v.  
(Here we write concatenation as algebraic 
multiplication.)  We say u is a suffix of v if 
∃w: wu = v.  And u is a substring of v if ∃w: 
∃z: wuz = v.  

• It’s easy to check that each of these relations 
is reflexive, antisymmetric, and transitive.



More Partial Order Examples

• Inclusion on sets is another partial order, as 
X ⊆ X, X ⊆ Y and Y ⊆ X imply X = Y, and X ⊆ 
Y and Y ⊆ Z imply X ⊆ Z.

• The subclass relation on Java classes is a 
partial order, since every class is a subclass of 
itself, two different classes can never each be 
subclasses of the other, and a subclass of a 
subclass is a subclass.  



More Partial Order Examples

• We represent this relation 
by an object hierarchy 
diagram in the form of a 
tree.  

• One class is a subclass of 
another if we can trace a 
path of extends 
relationships in the 
diagram from the subclass 
up to the superclass.  

Object

Dog
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Hasse Diagrams

• We make a Hasse diagram 
by making a dot for each 
element of the set, and 
making lines so that R(x, y) 
is true if and only if there 
is a path from x up to y.  

• (Relative position of points 
in a graph usually doesn’t 
matter, but here it does.)

Relation D on Divisors of 60
(wikipedia.org)



Hasse Diagram

• Starting from the graph of a 
partial order, we make a 
Hasse diagram as follows.

• We first delete the loops.

• We then position the does 
so the all arrows go upward.

• Finally we delete arrows that 
are implied by transitivity 
from other arrows.

Inclusion on Sets
(wikipedia.org)



The Hasse Diagram Theorem

• A Hasse diagram is a convenient way to 
represent a partial order if we can make one.  

• But if I am just given R and told that it is a 
partial order, can I always make a Hasse 
diagram for it?  

• The potential problem comes with the rule 
that the points must be arranged so that 
every arrow goes upward.



The Hasse Diagram Theorem
• The Hasse Diagram Theorem says that 

any finite partial order is the “path-below” 
relation of some Hasse diagram, and the 
“path-below” relation of any Hasse diagram is 
a partial order.

• The second of these two statements is easy 
to prove -- we just have to check that the 
path-below relation is reflexive, 
antisymmetric, and transitive.

• The text proves the first statement -- we’ll 
prove it later using mathematical induction.



Defining an Equivalence Relation

• We have been looking at partial orders, which 
are reflexive, antisymmetric, and transitive.  
Now we look at equivalence relations: 
binary relations on a set that are reflexive, 
symmetric, and transitive.

• Recall the definitions:  R is reflexive if ∀x: 
R(x, x), R is symmetric if ∀x: ∀y: R(x, y) → 
R(y, x)), and R is transitive if ∀x: ∀y: ∀z: 
(R(x, y) ∧ R(y, z)) → R(x, z).



Defining an Equivalence Relation

• You should be familiar with these properties 
of the equality relation: “x = x” is always true, 
from “x = y” we can get “y = x”, and we know 
that if x = y and y = z, then x = z.  The idea of 
equivalence relations is to formalize the 
property of acting like equality in this way.

• To prove that a relation is an equivalence 
relation, we formally need to use the Rule of 
Generalization, though we often skip steps if 
they are obvious.



Some Equivalence Relations

• If A is any set, we can define the universal 
relation U on A to always be true.  Formally, 
U is the entire set A × A consisting of all 
possible ordered pairs.

• Of course U(x, x) is always true, and the 
implications in the definitions of symmetry 
and transitivity are always true because their 
conclusions are true.

• The always false relation ¬U (or ∅) is 
symmetric and transitive but not reflexive.



More Equivalence Relations

• The parity relation on naturals is perhaps 
more interesting.  We define P(i, j) to be true 
if i and j are either both even or both odd.  
Later we’ll call this “being congruent modulo 
2” and we’ll define “being congruent modulo 
n” in general.

• Any relation of the form “x and y are the 
same in this respect” will normally be 
reflexive, symmetric, and transitive, and thus 
be an equivalence relation.



Clicker Question #2

• Let S be the set of the fifty states in the 
United States.  Which of the following is not 
an equivalence relation?

• (a) A = {(x, y): states x and y became states in 
the same year}

• (b) B = {(x, y): states x and y are both states}

• (c) C = {(x, y): states x and y are either equal 
or share a land border, or both}

• (d) D = {(x, x): state x is a state}



Answer #2

• Let S be the set of the fifty states in the 
United States.  Which of the following is not 
an equivalence relation?

• (a) A = {(x, y): states x and y became states in 
the same year}

• (b) B = {(x, y): states x and y are both states}

• (c) C = {(x, y): states x and y are either equal or 
share a land border, or both} (not transitive)

• (d) D = {(x, x): state x is a state}



Graphs of Equivalence Relations

• What happens when we draw the diagram of 
an equivalence relation?  

• Because it is reflexive, we have a loop on 
every vertex, but we can leave those out for 
clarity.  The arrows are bidirectional because 
the relation is symmetric.  

• The effect of transitivity on the diagram is a 
bit harder to see.



Complete Graphs

• If we have a set of points that have 
some connection from each point to 
each other point, transitivity forces us 
to have all possible direct connections 
among those points.  

• A graph with all possible undirected 
edges is called a complete graph on 
its points.  The graph of an equivalence 
relation has a complete graph for each 
connected component.



Partitions

• We’ve claimed a characterization of the graph 
of any equivalence relation in terms of 
complete graphs.  Let’s now prove that this 
characterization is correct -- we will need a 
new definition.

• If A is any set, a partition of A is a set of 
subsets of A -- a set P = {S1, S2,..., Sk} where 
(1) each Si is a subset of A, (2) the union of all 
the Si’s is A, and (3) the sets are pairwise 
disjoint -- ∀i: ∀j: (i ≠ j) → (Si ∩ Sj = ∅).



Clicker Question #3

• Let D be the set {Cardie, Duncan, Jack, Nala}. 
Which of these sets of sets is not a partition 
of D?

• (a) {{Nala, Jack}, {Cardie}, {Nala, Duncan}}

• (b) {{Nala}, {Jack}, {Duncan, Cardie}}

• (c) {{Nala, Duncan, Cardie, Jack}

• (d) {{Cardie, Nala, Jack}, {Duncan}}



Answer #3

• Let D be the set {Cardie, Duncan, Jack, Nala}. 
Which of these sets of sets is not a partition 
of D?

• (a) {{Nala, Jack}, {Cardie}, {Nala, Duncan}}

• (b) {{Nala}, {Jack}, {Duncan, Cardie}}

• (c) {{Nala, Duncan, Cardie, Jack}

• (d) {{Cardie, Nala, Jack}, {Duncan}}



The Partition Theorem

• The Partition Theorem relates 
equivalence relations to partitions.  It says 
that a relation is an equivalence relation if and 
only if it is the “same-set” relation of some 
partition.  In symbols, the same-set relation of 
P is given by the predicate SS(x, y) defined to 
be true if ∃i: (x ∈ Si) ∧ (y ∈ Si).

• So we need to get a partition from any 
equivalence relation, and an equivalence 
relation from any partition.



“Same-Set” is an E.R.

• Let P = {S1, S2,..., Sk} be a partition of A and let 
SS be its same set relation.  We need to show 
that SS is an equivalence relation.

• It is easy to check that SS is reflexive, 
symmetric, and transitive by working with the 
definition.  We’ll look at this in Discussion #4 
on Monday.



Equivalence Classes

• If R is an equivalence relation on A, and x is 
any element of A, we define the 
equivalence class of x, written [x], as the 
set {y: R(x, y)}, that is, the set of elements of A 
that are related to x by R.

• The universal relation U has a single 
equivalence class consisting of all the 
elements.  The equality relation has a separate 
equivalence class for each element.



Equivalence Classes

• In the parity relation, the set of even numbers 
forms one equivalence class and the set of 
odd numbers forms another.

• If we let A be the set of people in the USA, 
and define R(x, y) to mean “x and y are legal 
residents of the same state”, we get fifty 
equivalence classes, one for each state.  One 
of them is {x: x is a legal resident of 
Massachusetts}.



The Classes Form a Partition

• To finish the proof of the Partition Theorem, 
we must prove that if R is any equivalence 
relation on A, the set of equivalence classes 
forms a partition.

• We’ll do this with quantifier proof rules in 
Discussion #4 on Tuesday.


