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Finishing Kleene’s Theorem

• A Normal Form for λ-NFA’s

• Building λ-NFA’s by Induction

• Why is this Construction Correct?

• A New Model: R.e.-NFA’s 

• State Elimination

• The Validity of State Elimination

• Three Examples of State Elimination



Review: Parts of Kleene’s Theorem

• Our goal in Kleene’s Theorem is to be able to convert regular expressions to 
DFA’s and vice versa.  

• In the last lecture we’ve provided two of the three pieces of the 
transformation from regular expressions to DFA’s.  We defined ordinary NFA’s 
and λ-NFA’s, then presented the Subset Construction to turn ordinary NFA’s 
to DFA’s, then presented the Killing λ-Moves Construction to turn λ-NFA’s to 
ordinary NFA’s.  

• Today we will see how to convert regular expressions to equivalent λ-NFA’s.  
This will complete the steps needed to go from regular expressions to DFA’s.

• In this lecture we will finish also Kleene’s Theorem by presenting the State 
Elimination Construction to convert DFA’s (or NFA’s, or λ-NFA’s) to regular 
expressions.



Review: Induction on Regular Expressions

• We want to prove that for every regular expression R, we can construct a λ-
NFA N such that L(N) = L(R).

• The way to prove a proposition P(R) for all regular expressions R is to use 
induction on the definition of regular expressions.  We must prove the two 
base cases, (1) P(∅) and (2) P(a) for every letter a ∈ Σ.  Then we must prove 
the three inductive cases.  If P(R) and P(S) are true, we must (3) prove P(R + 
S), (4)   prove P(RS), and (5) prove P(R*).

• Here P(R) is “there exists N with L(N) = L(R)”.  As with our other inductive 
proofs on regular expressions, we will actually define a recursive algorithm 
that will take R as input and return N as output.  We could code this algorithm 
in pseudo-Java using class definitions for RegExp and LambdaNFA, but we 
will stick with an informal description here.



A Normal Form for λ-NFA’s

• Since we want to actually carry out this construction by hand on examples, 
we’re going to make it a little more complicated than it would need to be just 
to prove that a valid construction exists.  We’ll produce λ-NFA’s in a particular 
normal form -- they will satisfy three rules that will allow us to make simpler 
λ-NFA’s in most cases.

• Rule (1) says that the λ-NFA has exactly one final state, which isn’t the start 
state.

• Rule (2) says that no transitions go into the start state.

• Rule (3) says that no transitions go out of the final state.

• Similar rules will also show up later in the State Elimination Construction.



iClicker Question #1: λ-NFA Normal Form

• Here is a λ-NFA (though it denotes the empty string as ε 
instead of λ) that is not in the normal form we just specified.  
The four statements below are all true -- which one is a 
violation of the normal form?

• (a) There are two b-moves out of state q2.

• (b) There are no moves out of the final state q3.

• (c) There is exactly one final state which is not the start 
state.

• (d) There is a move into the start state q1.



The Construction

• (1) For ∅, we need a λ-NFA with a start state and a final state.  That’s all we 
need -- if it has no transitions, it accepts no strings and its language is ∅.

• (2) For a, we can again have a start state i and a final state f, with a single 
transition (i, a, f).  The rules are satisfied, and the language is {a} as it should be.

• (3) Now assume, as our IH, that we have constructed λ-NFA’s M and Mʹ for our 
two regular expressions R and Rʹ, and that M and N follow the three rules.  We 
need to build a new λ-NFA Mʹʹ such that L(Mʹʹ) = L(M) ∪ L(Mʹ) = L(R + Rʹ).  Mʹʹ will 
have copies of all the states of M and Mʹ, but we will merge the two initial 
states, and merge the two final states.

• (4) To make Mʹʹʹ with L(Mʹʹʹ) = L(M)L(Mʹ) = L(RRʹ), we instead merge the final state 
of M with the initial state of Mʹ, making the new state non-final.



The Star Case and the Proof

• (5) Finally we want to build a λ-NFA N such that L(N) = L(M)* =  L(R*).  Assume 
that M has start state i and final state f.  N’s states will be M’s states plus two 
more, a new start state s and a new final state t.  We then add four new λ-
moves: (s, λ, i), (i, λ, f), (f, λ, i), and (f, λ, t).  We make f now a non-final state.

• Now we want to prove by induction on all regular expressions that this 
construction is correct -- if N is the λ-NFA made from R, then L(N) = L(R).  
This is pretty obvious for the two base cases as we can check the languages 
of the λ-NFA’s directly.  So we must check the three inductive cases.

• With the two λ-NFA’s connected in parallel in step (3), a path from the start to 
final state of Mʹʹ must either pass through only states of M or only states of Mʹ.  
This is because the first move must be a move of either one machine or the 
other, and from that point we must stay in that machine until we finish, since 
we can’t return to the start or continue past the finish, due to the rules.  The 
path has either read a string in L(M) or read a string in L(Mʹ).



iClicker Question #2: A Different Star Construction

• Here, again with ε in place of λ, is a λ-NFA M 
constructed from an existing λ-NFA called N(s).  
The intent is that if N(s) has the language of 
some regular expression s, then L(M) = s*.  
Could we have used this construction?

• (a) No, because M is not in our normal form.

• (b) No, because L(M) does not include all the 
strings in s*.

• (c) No, because L(M) includes strings not in s*.

• (d) Yes.



Finishing the Correctness Proof

• In step (4) we created Mʹʹʹ by connecting M and Mʹ in series, and we must 
show that L(Mʹʹʹ) = L(M)L(Mʹ).  How could a path get from the start state of Mʹʹʹ 
(which is the start state of M) to the final state of Mʹʹʹ (which is the start state 
of Mʹ)?  The first transition has to be in M, then the path must stay in M until it 
reaches the final state of Mʹ.  The only way out of that state is into Mʹ, where it 
must stay until it reaches the final state and then stops.  So the path reads a 
string in L(M) followed by a string in L(Mʹ), as it should.

• In step (5) we created N by adding two new states and four new λ-moves to 
N.  First note that we can read any sequence of zero or more strings in L(M) 
by going to i, reading each string going from i to f, returning to i each time, 
then winding up in t.  Furthermore, any path from s to t must consist of some 
combination of trips from i through M to f, and uses of the new λ-moves.  So 
the string we read is the concatenation of zero or more strings in L(M), and 
thus is in L(M)*.



Some Notes on the Construction

• The construction makes use of the normal form constantly -- if we could not 
assume that the input λ-NFA’s followed the rules, we would need to introduce 
new states and new λ-moves in steps (3) and (4) as well as in (5).  We pay for 
the normal form in step (5).  We need to connect the start and final states, but 
then to obey the rules we need to put in new start and final states.

• We only create λ-moves when we do step (5).  Thus if R has few or no stars, we 
will get a λ-NFA with few or no λ-moves, which can be good because making 
an ordinary NFA is more complicated the more λ-moves there are.

• We can sometimes see ways to simplify the λ-NFA without changing the 
language.  But we need to be careful that our simplification is correct.

• It can be shown that the number of states in the λ-NFA is about the same as 
the length of the regular expression.  So the only big blowup is NFA’s to DFA’s.



An Example: (ab + ba)* + bb

• Let’s see how the construction works on a fairly complicated regular 
expression.  (There are diagrams of this example in the text.)  We can think of 
the construction either top-down or bottom-up -- let’s try bottom-up.

• The three regular expressions “ab”, “ba”, and “bb” each get three-state λ-
NFA’s, with letter moves from the start state to a middle state and from that 
middle state to a final state.  

• The λ-NFA for “ab + ba” has four states, three each for “ab” and “ba” minus 
two when we merge the two start states and two final states.  To get a λ-NFA 
for (ab + ba)* we add a new start and final state, plus four new λ-moves, to 
get a six-state λ-NFA with four letter moves and four λ-moves.  Finally, we 
place this six-state machine in parallel with the three-state machine for “bb”, 
getting a seven-state machine with six letter moves and four λ-moves.



Taking This Example to a Minimal DFA

• Killing the λ-moves in this seven-state λ-NFA gives us a seven-state ordinary 
NFA with state set {i, p, q, r, s, t, f}, start state i, final state set {i, f}, and 
fourteen transitions: (i, a, q), (i, b, r), (i, b, t), (p, a, q), (p, b, r), (q, b, p), (q, b, f), 
(q, b, s), (r, a, p), (r, a, s), (r, a, f), (s, a, q), (s, b, r), and (t, b, f).

• We could potentially get 128 states in our DFA, but fortunately the process 
stops with only seven.  State {i} goes to {q} on a and {r,t} on b, state {q} goes 
to ∅ on a and {p,s,f} on b, state {r,t} goes to {p,s,f} on a and {f} on b, state ∅ 
stays at ∅ on both, state {p,s,f} goes to {q} on a and to {r} on b, state {f} goes 
to ∅ on both, and state {r} goes to {p,s,f} on a and to ∅ on b.

• This DFA is minimal.  The three final states are {i}, {p,s,f}, and {f}.  String bb 
separates {i} from {p,s,f}, and ab separates these two from {f}.  The four non-
final states are {q}, {r,t}, {r}, and ∅, and we can separate these pairwise as 
well.



The Big Picture of Kleene’s Theorem

• We are finally ready to finish Kleene’s Theorem, proving that a language has a 
regular expression if and only if it has a DFA.  We have shown how to take a 
regular expression, produce a λ-NFA from it by the recursive construction, kill 
the λ-moves to get an ordinary NFA, use the Subset Construction to get a 
DFA, and then (if we want) minimize that DFA.

• The remaining step is to take a DFA and produce a regular expression for its 
language.  As it turns out, the State Elimination Construction works equally 
well to get a regular expression for the language of any ordinary NFA or λ-NFA 
as well.

• While the first two steps of converting a regular expression to a DFA roughly 
preserve the size, the Subset Construction in general takes an NFA with k 
states to a DFA with 2k states.  Though we won’t prove this, State Elimination 
can also cause a large blowup, creating a long regular expression from a 
small DFA.  (Excursion 14.11 in the text takes a closer look at this.)



Another New Model: The r.e.-NFA

• The State Elimination Construction operates on yet another kind of NFA, 
which we will call an r.e.-NFA because the labels on its moves can be 
arbitrary regular expressions instead of just letters (as in an ordinary NFA) or 
either letters or λ (as in a λ-NFA).  

• Not every diagram with regular expressions on its edges is an r.e.-NFA -- we 
need to satisfy some rules.  The first three are the same as the rules in our 
construction of λ-NFA’s from regular expresssions: (1) exactly one final state, 
not equal to the start state, (2) no moves into the start state, (3) no moves out 
of the final state.  The last rule is new: (4) no parallel edges, that is, no two 
edges with the same start node and end node.

• We have to redefine the ∆* operation.  We still have ∀s: ∆*(s, λ, s), but now we 
have the rule [∆*(s, v, u) ∧ ∆(u, R, t) ∧ (w ∈ L(R))] → ∆*(s, vw, t).  This rule isn’t 
very useful for computing, as we have no equivalent top-down form for it.



iClicker Question #3: The R.e.-NFA Definition
• Here is another λ-NFA (again with ε in place of λ). 

Is it also a legal r.e.-NFA according to our 
definition?

• (a) No, because there are two moves out of the 
start state.

• (b) Yes, as long as we consider “ε” to be the 
regular expression “∅*”.

• (c) No, because the moves have letters and ε 
rather than regular expressions

• (d) No, because the transition (0, a, 2) is 
unnecessary.



Overview of the Construction

• The basic idea is to take our original DFA (or NFA, or λ-NFA), modify it so that 
it obeys the r.e.-NFA rules but still has the same language (how?) and then 
eliminate states one by one until there are only two left.  Each elimination will 
preserve the language of the automaton and ensure that the r.e.-NFA rules 
still hold.

• An r.e.-NFA with two states must have one of them as the start state and the 
other as the only final state, by rule (1).  By rules (2), (3), and (4), there can be 
only one edge, going from the start state to the final state, and the only 
possible path from the start state to a final state has exactly one edge, this 
one.  The edge is labeled by a regular expression R, and the language of the 
r.e.-NFA is exactly L(R).  Thus L(R) is also the language of the original DFA.

• The states we eliminate are every state except the start state and final state.  
We can eliminate them in any order and get a correct final regular expression, 
but if we choose the order wisely we may get a simpler regular expression.



Eliminating a State

• Suppose we have a state q that is neither initial nor final, and we want to 
eliminate it.  We don’t care about paths that start or end at q, because the 
language is defined only in terms of paths that start at the initial state and end 
at the final state.  To safely delete q, we have to replace any two-step path, 
that had q as its middle node, by a single edge.

• If (p, α, q) and (q, β, r) are any two edges, and (q, γ, q) is the loop on q, then 
when we delete q we must add a new edge (p, αγ*β, r).  (Here α, β, and γ are 
regular expressions.  Note also that p = r is possible.)  If there is already an 
edge from p to r, though, we add the new edge by changing the existing (p, δ, 
r) to (p, δ + αγ*β, r).  (Note that if there is no loop on q we can take γ to be ∅ 
and then γ* = ∅* which is the identity for concatenation, so that αγ*β = αβ.)  

• When we delete q, we should count all the m edges into q and all the n edges 
out of q, and make sure that we have added mn new edges.  The loop on q, if 
it exists, does not count toward either m or n.



iClicker Question #4: Eliminating a State

• Suppose we eliminate state 2 from this r.e.-
NFA.  What is the set of new transitions we 
must add to replace the state?

• (a) (0, ab*a, 3) only

• (b) (0, ab*, 2) only

• (c) (0, aa, 3) and (1, a, 3)

• (d) (0, ab*a, 3) and (1, b*a, 3)



Example: The Language EE

• In Discussion #11 we designed a regular expression for the language EE of 
strings over {a, b} that have both a even number of a’s and an even number of 
b’s.  We’ll now use State Elimination to get such an expression from a DFA.

• The DFA has state set {00, 01, 10, 00} -- 00 is the start state and the only final 
state, a’s change the first bit of the state, b’s change the second bit. But this 
DFA violates the rules for an r.e.-NFA -- we have to add a new start state i and 
a new final state f, and add transitions (i, λ, 00) and (00, λ, f).  Now all we have 
to do is eliminate four states to get our regular expression.

• We begin by killing 01, which has two edges in and two out.  We need four 
new edges: (00, bb, 00), (00, ba, 11), (11, ab, 00), and (11, aa, 11).  Next we 
eliminate 10 (which looks like a good idea as it has no loop and fewer overall 
edges.  Again we get four new edges, each of which is parallel to an existing 
edge, making (00, aa+bb, 00), (00, ab+ba, 11), (11, ab+ba, 00), and (11, aa
+bb, 00).  This gives us four states.



Finishing the EE example

• The four remaining states are i, 00, 11, and f.  State 11 now has one edge in 
and one edge out, along with a loop.  When we eliminate 11 we create only 
one edge, (00, (ab+ba)(aa+bb)*(ab+ba), 00).  This adds to the existing edge 
(00, bb+aa, 00), to give us the single edge (00, aa+bb+(ab+ba)(aa+bb)*(ab
+ba), 00).  Note that this regular expression is exactly what we designed for 
the language EEP (the nonempty strings in EE that cannot be factored into 
two other nonempty strings in EE).

• The last state to eliminate is now 00, which also has one edge in, one edge 
out, and one loop.  (Note that a three-state r.e.-NFA must have a form similar 
to this, maybe with another edge from the initial to final state.)  The one edge 
that we create is (i, [aa+bb+(ab+ba)(aa+bb)*(ab+ba)]*, f), and our final regular 
expression is the label of this edge.

• We would get a grubbier, equivalent regular expression by eliminating the 
states in a different order. 



Example: The Language No-aba

• We’ve seen the language Yes-aba = Σ*abaΣ* and its complement No-aba 
several times now.  We have a four-state DFA for No-aba -- let’s turn this into 
a regular expression.

• The state set is {1,2,3,4}, the start state 1, final state set {1,2,3,4}, and edges 
(1,a,2), (1,b,1), (2,a,2), (2,b,3), (3,a,4), (3,b,1), (4,a,4), and (4,b,4).  Again we 
need new start states i and f, with new edges (i,λ,1), (1,λ,f), (2,λ,f), and (3,λ,f).

• We can just delete 4 and no new edges are needed.  Then 2 looks like a good 
state to kill -- we get the two edges (1, aa*b, 3), and (1, aa*, f), and the latter 
becomes (1, λ+aa*, f).  Now if we kill 3 we create (1, aa*bb, 1) which becomes 
(1, b + aa*bb, 1) and (1, aa*b, f) which becomes (1, λ + aa* + aa*b, f).

• Killing 1 gives the final expression (b + aa*bb)*(λ + aa* + aa*b).



Example: Number of a’s Divisible by Three

• Here’s another example (Exercise 14.10.3 in the text).  Let D be the language 
of strings over {a, b} where the number of a’s is divisible by 3.  It’s clear how 
to make a DFA for this: states {0, 1, 2}, start state and only final state 0, edges 
(p, b, p) for each state p, and edges (0, a, 1), (1, a, 2), and (2, a, 0).  To make 
an r.e.-NFA, we once again add a new start state i and new final state f, with 
edges (i, λ, 0) and (0, λ, f).  We have five states now and must kill three.

• We first kill 2, creating one new edge (1, ab*a, 0).  Then killing 1 creates a new 
edge (0, ab*ab*a, 0), which adds to the existing (0, b, 0) to get (0, b + ab*ab*a, 
0).  Finally, killing 0 gives the expression [b + ab*ab*a]*, which makes sense 
because we can break any string in D into pieces that are either b’s or have 
exactly three a’s.

• A more challenging problem is the language of strings where both the number 
of a’s and the number of b’s are divisible by three.  How about the strings 
where the number of a’s and the number of b’s are congruent modulo 3?


