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Induction and Recursion

• Three Rules for Recursive Algorithms

• Proving a Recursive Algorithm Correct by Induction

• Recursively Defined Functions

• The Fibonacci Numbers

• The Behavior of the Euclidean Algorithm

• Recursively Defined Structures

• Recursion on Trees



Three Rules for Recursive Algorithms

• A recursive algorithm is one that calls itself with a different parameter.  For 
example, we might calculate the factorial n! by using a recursive call to 
compute (n-1)!, then multiply the result by n.

• In CMPSCI 187, I teach three rules -- three properties to check in order to 
verify the correctness and termination of a recursive algorithm:

• The algorithm must have a base case where it gets an answer without further 
recursion.

• Every recursive call must make progress towards the base case.

• If every recursive call terminates and gives the correct output, the original call 
will terminate and give the correct output.



Proving Recursive Algorithms Correct by Induction

• Suppose my recursive algorithm A has one parameter which is a natural 
number n.  Let P(n) be the statement that the method call A(n) terminates with 
the correct output.  How would I prove ∀n:P(n) by strong induction?

• 1) I would prove P(0), which says that A(0) terminates with the correct output.

• 2) I would make sure that all calls from A(n) are to methods A(i) with i < n.

• 3) I would prove that if the strong inductive hypothesis holds, and thus all the 
recursive calls terminate with the correct output for them, then the original call 
to A(n) terminates with the correct output.

• The verification rules from CMPSCI 187 are just the steps of the strong 
induction proof, in the case where there is one parameter that is a natural.



Recursively Defined Functions

• One virtue of recursive algorithms is that they are often easy to prove correct.  
This is particularly true when the desired function itself has a recursive 
definition.

• We can define the factorial function fact(n) by the two rules fact(0) = 1 and 
fact(n) = n⋅fact(n-1), where the latter rule holds whenever n ≥ 1.  It’s easy to 
write a recursive method that matches this definition, and prove that method 
correct.  We can also write recursive definitions for addition, multiplication, 
and powering.

• Often the running time of an algorithm is given by a recurrence, which is a 
kind of recursive definition.  We’ll see more of this in CMPSCI 311

• With more than one parameter we have to know that the recursive calls don’t 
go on forever, which is saying that the set of parameter values is a well-
ordered set and that the calls always go downward in its ordering.



iClicker Question #1: Recursive Powering

• Suppose we want a recursive definition for a function power(x, y), where the 
intended result is xy.  Which set of rules will give us a correct definition?

• (a) power(x, 0) = 1; power(x, y) = x⋅power(x, y-1) whenever y ≥ 1

• (b) power(x, 0) = 0; power(x, y) = power(x, 1)⋅power(x, y-1) whenever y ≥ 1

• (c) power(x, 0) = x; power (x, y) = power(x, 0)⋅power(x, y) whenever y ≥ 1

• (d) power(x, 0) = 1; power(x, y) = power(x, 0)⋅power(x, y) whenever y ≥ 1



The Fibonacci Numbers

• The Fibonacci numbers have a recursive definition with two base cases.  We 
define fib(0) = 0, fib(1) = 1, and for any n ≥ 1, fib(n+1) = fib(n) + fib(n-1).  So 
fib(2) = 1 + 0 = 1, fib(3) = 1 + 1 = 2, fib(4) = 2 + 1 = 3, and fib(5) = 3 + 2 = 5.

• We could calculate fib(n) by the following Java method:

• This is clearly correct, but it is woefully inefficient as you can see if you trace 
its execution on input 5.  It takes about fib(n) steps, so on input 100 it would 
take longer than the expected age of the universe to compute the answer of 
354224848179261915075.  If we memoize to avoid recalculating the same 
function value more than once, however, we can compute large values easily.

public int fib (int n) {
   if (n <= 1) return n;
   return fib(n-1) + fib(n-2);}



The Behavior of the Euclidean Algorithm

• We can easily prove by strong induction that the Euclidean Algorithm 
terminates given any two natural numbers as input.  Let P(n) be the statement 
that the EA terminates on input (n, b) when b < n.  P(1) is true because the only 
possible case has b = 0 and this terminates immediately.  If we assume P(k) for 
all k ≤ n and look at the EA on input (n+1, b), we see that after one step we call 
the EA again on input (b, c) for c = (n+1)%b, and this call must terminate 
because we know that P(b) is true.

• How many steps does the EA take?  Rosen shows by induction on n that if the 
EA takes n divisions to find gcd(a, b), then b must be at least fib(n+1).  He also 
shows that fib(n+1) is at least αn-1, where α is the number (1 + √5)/2 which is 
about 1.61.  This shows Lame’s Theorem, which says that the number of 
divisions in the EA is at most five times the number of digits in the input 
numbers.  This means that we take O(n) time to test whether two n-digit 
numbers are relatively prime, making this test practical even for huge numbers.



iClicker Question #2: Fibonacci Bounds

• Let α be the number (1 + √5)/2, which is about 1.6.  We can prove by strong 
induction that for any n with n ≥ 3, the Fibonacci number fib(n) is at least αn-2. 
What two consequences of the strong inductive hypothesis will we need to 
complete the inductive step?

• (a) We need to prove “fib(4) > α2” and “fib(3) > α” for the base case.

• (b) We need “fib(3) > α” and “fib(n-1) > αn-3” to prove “fib(n) > αn-2”.

• (c) We need “fib(0) = 0” and “fib(1) = 1” to prove “fib(n+1) = fib(n) + fib(n-1)”.

• (d) We need “fib(n) > αn-2” and “fib(n-1) > αn-3” to prove “fib(n+1) > αn-1”.



Recursively Defined Structures

• Many structures in computer science have recursive definitions.  This allows 
us to define functions on those structures recursively, and write recursive 
methods to implement those functions.

• A stack is a data structure that is either an empty stack, or a stack with an 
element pushed onto it.  We can define the pop operation recursively -- a 
pop from an empty stack is an error, and popping from “S with x pushed onto 
it” returns the value x and makes the stack equal to S.  The size of an empty 
stack is 0, and the size of “S with x pushed onto it” is the size of S plus 1.

• We could write similar definitions for queues and lists, for binary search trees, 
for arithmetic expressions, and a host of other structures.  As in Rosen, we 
can recursively define strings over an alphabet, and functions like 
concatenation and length.  Each kind of structure has a “law of induction” to 
say when a definition applies to all possible structures.



iClicker Question #3: Stacks

• Each of the following is an informal description of a recursive method which is 
meant to clear a stack, which means replacing it with an empty stack.  Which 
method is correct?

• (a) Pop an element and clear the stack.

• (b) If the stack is empty, do nothing.  Otherwise pop an element.

• (c) Create a new stack, pop an element from the old stack, and push that 
element onto the new stack.

• (d) If the stack is empty, do nothing.  Otherwise pop an element and clear the 
stack.



Recursively Defined Trees

• Tree structures are ubiquitous in computer science.  There are many different 
classes of trees, with slight variations in their definitions and a different name in 
each setting.  But Rosen defines three types in Section 5.3, each with a 
recursive definition.

• A rooted tree is either a single vertex (its own root) or a vertex with one or more 
children and an edge to the root of each child.  Rooted trees model directory 
trees in a file system, and the object hierarchy in Java.

• An extended binary tree (EBT) is either the empty set or a vertex with two 
children, each of which is an EBT.  The right and left children are distinguished.

• A full binary tree (FBT) is either a single vertex or a vertex with left and right 
children that are each FBT’s -- contrast this with the CMPSCI 187 definition 
where a full binary tree had to be balanced.



Recursion on Binary Trees

• Each of these tree types can easily be embodied as a Java class, where each 
object has fields that are pointers to other objects of the same class:

• We can write instance methods in such a Tree class to, for example, count 
the elements in the calling Tree object:

• Similarly, we can use recursion to find the depth of the tree or some function 
of the node values, such as their sum or their maximum if they are numbers.

public class Tree {
   Node root;
   Tree left;
   Tree right;

public size( ) {
   if ((left == null) && (right == null)) return 1;
   else return left.size( ) + right.size( ) + 1;}



iClicker Question #4: Binary Trees

• Suppose that every node in a full binary tree (whether a leaf or an internal 
node) has a numerical value.  I want to write a sum method that will return the 
sum of the values of all the nodes in the tree.  Which of these is the correct 
recursive way to do this?

• (a) Return the sum of the left subtree plus the sum of the right subtree.

• (b) If the tree has only one node, return its value.  Otherwise return the root’s 
value plus the sum of the left subtree plus the sum of the right subtree.

• (c) If the tree has only one node, return its value.  Otherwise return the value 
of the root’s left child plus the value of the root’s right child.

• (d) Set a variable to zero, then visit each node in turn using breadth-first 
search and add its value to the variable, returning the variable at the end.



Expression Trees

• We’ve seen both boolean and arithmetic expressions in this course, and both 
kinds of expressions may be modeled by binary trees.  An expression is made 
up from atoms (constants or variables), connected by unary or binary 
operators.  The expression tree has an atom at each leaf and an operator at 
each internal node.

• Expression trees must resolve any ambiguity about the order of operations in 
the expression.  In CMPSCI 187 we discussed how to transform such a tree 
into a string, and vice versa.

• In the next discussion, the Monday after break, you’ll write some Java code 
for boolean expression trees using a class definition I’ll give you.  There the 
value of a leaf will be true or false, and the operator at an internal node will be 
AND, OR, or NOT.  (A NOT node has only a left child, while AND and OR 
nodes have both left and right children.)


