
CMPSCI 250 Discussion #10: Uniform-Cost Search
Individual Handout

David Mix Barrington
8 April 2013

In last week’s discussion we used matrices to solve the all-pairs shortest path problem for a
directed graph labeled with distances on each edge. Today, we’ll use a different approach to solve
the single-source shortest path problem on the same graph. This is essentially the same thing
as Dijkstra’s Algorithm presented in section 10.6 of Rosen, but we’ll describe the algorithm
differently to emphasize its relationship to depth-first and breadth-first search.

In both those algorithms we find all those vertices reachable from some start point. Beginning
with the start point, we explore each vertex we find. To explore a vertex means to take all of its
neighbors and put a record for each onto a data structure called the open list. For each neighbor,
more precisely, that is not already on another data structure called the closed list. When we are
done exploring the current vertex, we take the next vertex off of the open list and explore that,
continuing in this way until the open list is empty or until we find a particular goal node.

In DFS the open list is a stack, and in BFS it is a queue. In those two searches we put a node
onto the closed list once we have started exploring it, since there is no point in visiting it again.
In today’s algorithm, called uniform-cost search, the open list will be a priority queue. The
records in it will contain both a node x and a priority, which will be the distance from the start
node to x along the path we have just found. When we take a node off the priority queue, we get
the one with the lowest priority, that is, the one that is closest to the start node as best we know.

How do we get the distance to put in the record for a new node? Suppose the start node is s, and
in the course of exploring x we find an edge to a node y that is not on the closed list. We have
a shortest-path distance dx from s to x, which was the label on the record for x that we took off
the queue. We also have the label dxy for the edge from x to y. The new label will be dx + dxy,
reflecting the fact that we can go from s to y in this distance by taking the shortest path from s to
x and then the edge to y.

The key step in showing that we actually get the shortest path from the start node to each other
node is that when a node x comes off the open list, with distance d, we have checked all possible
paths of length less than d from the start node. Thus no path that we haven’t yet checked could
be shorter than the one that got this record put onto the open list.

Note that we do not put a node on the closed list until it has come off of the open list. We might
have a path already, but later discover a better path.

(questions on other side)

Today’s assignment deals with the same labeled directed graph from last week, which has vertices
named a, b, c, d, and e, and the following single-source distance matrix:

1




0 1 3 ∞ 7
∞ 0 1 ∞ ∞
∞ ∞ 0 1 3
4 3 ∞ 0 1
∞ ∞ 4 0 0


Question 1: Carry out a uniform-cost search of this graph starting with vertex a. Indicate which
records come on and off the priority queue, in which order. Neighbors of the same node go onto
the queue in alphabetical order, and if two nodes are tied for having the lowest priority, the one
that went on first comes off first.

Question 2: There is a path of length 6 from a through c to e. Did your algorithm look at this
path before finding a better one? Why or why not?

Question 3: Suppose we had a graph with n vertices where each node had only O(1) neighbors.
What would be the big-O running time needed to solve the all-pairs shortest path problem by
solving the single-source shortest path problem for each vertex? (Assume we keep our priority
queue as a heap, so that each enqueueing or dequeueing operation takes O(log n) time.) How does
this compare with the matrix multiplication method from last week?

2


