CMPSCI 250: Introduction to Computation

Lecture #9: Properties of Functions and Relations David Mix Barrington 10 February 2012

Properties of Functions and Relations

- Defining Functions With Quantifiers
- Total and Well-Defined Relations
- One-to-One and Onto Functions
- Bijections
- Composition and Inverse Functions
- Properties of Binary Relations on a Set
- Examples of Binary Relations on a Set

Defining Functions With Quantifiers

- Recall that when A and B are two sets, a relation from A to B is any set of
 ordered pairs, where the first element of each pair is from A and the second is
 from B. We say that the relation R is a subset of the direct product A × B.
- A **function** in ordinary computing usage is an entity that gives an **output** of a given type (the range) whenever it is called with an **input** of a given type (the domain). A function from A to B takes input from A and gives output from B.
- A relation from A to B may or may not define a function from A to B. We say that the relation is a function if for each input, there is *exactly one* possible output. That is, for every element x of A, there is exactly one element y of B such that the pair (x, y) is in the relation.
- We can put this definition into formal terms using predicates and quantifiers.

Total and Well-Defined Relations

- Let R be a relation from A to B. We'll write " $(x, y) \in R$ " as "R(x, y)", identifying the relation with its corresponding predicate. What does it mean for R to be a relation?
- Part of the answer is that each x must have at least one y such that R(x, y) is true. In symbols, we say ∀x: ∃y: R(x, y). This property of a relation is called being **total**.
- The other part is that each x may have at most one y such that R(x, y) is true -- this is the property of being **well-defined**. We can write that no x has more than one y, by saying $\forall x: \forall y: \forall z: (R(x, y) \land R(x, z)) \rightarrow (y = z)$. Another way to say this is $\neg \exists x: \exists y: \exists z: R(x, y) \land R(x, z) \land (y \neq z)$.
- A relation that is well-defined, but not necessarily total, is called a partial function. A non-void Java method computes a partial function since it may not terminate for all possible inputs.

One-to-One and Onto Functions

- We can also use quantifiers to define two important properties of functions.
- A function is **onto** (also called a **surjection**) if every element of the range is the output for at least one input, in symbols $\forall y : \exists x : R(x, y)$. Note that this is not the same as the definition of total because the x and y are switched -- it is the **dual** property of being total.
- A function is **one-to-one** (an **injection**) if it is never true that two different inputs map map to the same output. We can write this as $\forall w: \forall x: \forall y: (R(w, y) \land R(x, y)) \rightarrow (w = x)$, or equivalently $\neg \exists w: \exists x: \exists y: R(w, y) \land R(x, y) \land (w \neq x)$. This is obtained from the well-defined property by switching domain and range.
- These properties are important in combinatorics -- if A and B are finite sets, we can have a surjection from A to B if and only if $|A| \ge |B|$, and we can have an injection from A to B if and only if $|A| \le |B|$. (Here "|A|" denotes the number of elements in A, and "|B|" the number in B.)

Bijections

- It is possible for a function to be *both* onto and one-to-one. We call such a function a **bijection** (also sometimes a **one-to-one correspondence** or a **matching**).
- From what we just said about the sizes of finite sets in a surjection or injection, a bijection from A to be is possible if and only if |A| = |B|.
- There is an interesting theory, which we don't have time for in this course, about the sizes of *infinite* sets, where we *define* two sets to have the same "size" if there is a bijection from one to the other.
- A bijection from a set to itself is also called a **permutation**. The problem of **sorting** is to find a permutation of a set that puts it in some desired order.

Composition and Inverse Functions

- If f is a function from A to B, and g is a function from B to C, we can define a function h from A to C by the rule h(x) = g(f(x)). We map x by f to some element y of B, then map y by g to an element of C. This new function is called the **composition** of f and g, and is written " $g \circ f$ ".
- The notation $g \circ f$ is chosen so that $(g \circ f)(x) = g(f(x))$, that is, the order of f and g remains the same in these two ways of writing it.
- With quantifiers, we can define $(g \circ f)(x) = z$ to mean $\exists y$: $(f(x) = y) \land (g(y) = z)$.
- If A and C are the same set, it is possible that the function g *undoes* the function f, so that g(f(x)) is always equal to x. This can only happen when f is a bijection -- in this case A and B have the same size, and g must also be a bijection. We then say that f and g are **inverse functions** for each other.

Properties of Binary Relations on a Set

- Relations from a set to itself (called **relations on a set**) may or may not have certain properties that we also define with quantifiers.
- A relation R is **reflexive** if $\forall x$: R(x, x) is true, and **antireflexive** if $\forall x$: ¬R(x, x). Note that "antireflexive" is not the same thing as "not reflexive".
- R is **symmetric** if $\forall x$: $\forall y$: $R(x, y) \rightarrow R(y, x)$, or equivalently $\forall x$: $\forall y$: $R(x, y) \leftrightarrow R(y, x)$. It is **antisymmetric** if $\forall x$: $\forall y$: $(R(x, y) \land R(y, x)) \rightarrow (x = y)$. Again "antisymmetric" is a different property from "not symmetric".
- R is **transitive** if $\forall x$: $\forall y$: $\forall z$: $(R(x, y) \land R(y, z)) \rightarrow R(x, z)$. We saw this property last lecture with the "smaller than" property for dogs.

Examples of Binary Relations on a Set

- The **equality relation** E is defined so that E(x, y) is true if and only if x = y. This relation is reflexive, symmetric, and transitive. We'll soon see that any relation with these three properties, called an **equivalence relation**, acts in many ways like equality.
- On numbers, for example, we can define LE(x, y) to mean x ≤ y, and LT(x, y) to mean x < y. LE is reflexive, antisymmetric, and transitive, and relations with *those* three properties are called **partial orders**. LT is antireflexive, antisymmetric, and transitive.
- In the game of **rock-paper-scissors**, we can define a "beats" relation so that B(x, y) means "x beats y in the game". So B(r, s), B(s, p), and B(p, r) are true and the other six possible atomic statements are false. This relation is antireflexive, antisymmetric, and *not* transitive.