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Proofs With Quantifiers

• The Meaning of Quantifier Proofs

• The Four Proof Rules

• Instantiation: Eliminating ∃

• Existence: Introducing ∃

• Specifation: Eliminating ∀

• Generalization: Introducing ∀

• The Dog Example



The Meaning of Quantifier Proofs

• A quantified statement talks about a particular situation -- a set of objects 
divided into data types, and some predicates with arguments from particular 
types.  For every legal atomic statement, which is a predicate with 
arguments of the proper type filled in, we need to have the truth value 
defined.

• We may also have constants -- values from specific types that are given 
names.

• Our final example today will have a set of dogs D, three unary predicates on 
dogs W(x) “x likes walks”, R(x) “x is a Rottweiler”, and T(x) “x is a terrier”, and 
a binary predicate S(x, y) “dog x is smaller than dog y”.   We will also have 
two constants of type D, Cardie (c) and Duncan (d).  There are an infinity of 
possible models of these predicates -- we want to show that any model that 
satisfies our premises also satisfies our conclusion.



The Four Proof Rules

• In the Forward-Backward method, we have one statement that we want to go 
forward from, and another we want to go backward from.  The structure of 
these statements lets us know what kind of quantifier proof rule we can use.  
In particular, the outermost quantifier controls what we can do.

• To go forward from a universal statement, we want to eliminate the universal 
quantifier, that is, go from ∀x: P(x) to P(a).  To go forward from an existential 
statement, we want to eliminate the ∃, going from ∃x: P(x) to P(a).  The rules 
of Specification and Instantiation will allow us to do this, but we must be 
careful of our context and the meaning of our variables.

• To go backward from a universal statement, we want to prove ∀x: P(x), 
introducing a universal quantifier.  The rule of Generalization lets us do this, 
and the rule of Existence lets us introduce an existential and prove ∃x: P(x).



Instantiation: Eliminating ∃

• Given the premise “there exists a dog that is a terrier” (∃x: T(x)), the rule of 
Instantiation lets us derive a statement T(a), eliminating the quantifier.

• In English, we would say “let a be the dog that exists by the premise, so that 
we know T(a)”.  Here “a” must be a new variable, referring to a new dog.  We 
don’t know whether that new dog is equal to any old dogs, or whether any of 
the other predicates are true for it.  We know only its type and the fact T(a) 
that we got from the statement we instantiated.

• In essence we are giving a name to one of the dogs, who may or may not be 
one of the dogs we already know something about.  A common error is to say 
something like “a terrier exists, therefore that terrier is Duncan”, claiming a 
name or a property of the instantiated object with no justification.



Existence: Introducing ∃

• How do we prove a statement like ∃x: P(x), introducing an existential 
quantifier?  The rule of Existence says that from any statement of the form 
P(a), we can derive ∃x: P(x).  For example, given the premise “Duncan is a 
terrier (T(d)), we can derive “there exists a dog that is a terrier” (∃x: T(x)).

• We have to be careful to introduce the existential quantifier so that its scope 
covers the entire statement that we are using.  If I have premises T(d)  and 
R(c), for example, I could derive ∃x: T(x) and ∃x: R(x).  But it would be a 
mistake to derive ∃x: (T(x) ∧ R(x)), “there is a dog that is both a terrier and a 
Rottweiler”.  To get that I would need a single statement T(a) ∧ R(a), with the 
same a in both places. 

• If I have ∃x:(T(x) ∧ R(x)), and I want to derive ∃y: T(y), I should first use 
Instantiation to say T(a) ∧ R(a) for some a, then separation to get T(a), then 
Existence.  There is no rule to go directly from this premise to this conclusion, 
and being sloppy with these rules can lead to errors.



Specification: Eliminating ∀

• If we have a universal statement of the form ∀x: P(x), then the rule of 
Specification allows us to derive P(a), where a is any constant or variable of 
the same type as x.  That is, we can derive P(a) for an a of our choice.

• If we have the statement ∀x: W(x),“all dogs like walks”, we can derive W(d), 
W(c), or W(y) for a free variable y that already appears in other statements.

• The one caveat to remember is that in principle we remove one universal at a 
time, and when we remove it we must set all occurrences of the bound 
variable to the same value.  Given, say, ∀x: W(x) ∧ S(x, d) ∧ (T(y) → S(y, x)), we 
could derive W(c) ∧ S(c, d) ∧ (T(y) → S(y, c) or W(y) ∧ S(y, d) ∧ (T(y) → S(y, y), 
but we couldn’t replace some x’s with c’s and others with y’s.  The one thing 
we can’t do is set x to an existing bound variable -- we could not go from ∀x: 
∀y: T(y) → S(x, y) to ∀y: T(y) → S(y, y).  This is because the bound y is defined 
after we set the value of x, so we can’t force the two to be the same.



Generalization: Introducing ∀

• We’ve just seen that universal statements are very powerful, so it stands to 
reason that we should have to work harder to prove them.  The rule of 
Generalization allows us to prove new universal statements.

• To prove a statement ∀x: P(x), we first say “let y be arbitrary”, where y is a 
new variable of the type of x.  We then have to prove that P(y) is true, without 
using any information about y other than its type.  If we do this, we may then 
derive ∀x: P(x).

• We most often use this in the form ∀x: (P(x) → Q(x)), so that we let y be 
arbitrary and then have to prove P(y) → Q(y).  To do this we can assume P(y) 
and use it to derive Q(y), which may be possible if P and Q are related.  When 
we do mathematical induction, we will prove statements of the form ∀x: P(x), 
where x is a natural, in part by proving ∀x: (P(x) → P(x+1)).



The Dog Example
• We have a set of dogs D, and predicates R(x) “x is a Rottweiler”, T(x) “x is a 

terrier”, S(x, y) “x is smaller than y”, W(x) “x likes to go for walks”.

• Premises: (1) All dogs like to go for walks (∀x: W(x)), (2) Duncan is a terrier 
(T(d)), (3) Cardie is smaller than some Rottweiler (∃x: R(x) ∧ S(c, x)), (4) All 
terriers are smaller than Cardie (∀x: T(x) → S(x, c)) (5) S is transitive (∀x: ∀y: 
∀z: (S(x, y) ∧ S(y, z)) → S(x, z).

• Desired conclusion: There exists a Rottweiler that is larger than some terrier 
who likes walks (∃x: ∃y: R(x) ∧ S(y, x) ∧ T(y) ∧ W(y)).

• Overall strategy: Figure out which dogs x and y ought to be -- maybe 
constants, maybe dogs forced to exist by the premises.  In this case y should 
be Duncan, and x should be the Rottweiler provided by premise (3).



More of the Dog Example

• We use Instantiation on (3) to get a dog r such that R(r) ∧ S(c, r).

• We need four facts about d and r:  We have R(r), and we need W(d), T(d), and 
S(d, r).

• We have T(d) by (2), and we get W(d) by Specification on (1).

• To get S(d, r), we use Specification on (4) to get T(d) → S(d, c), Modus Ponens  
to get S(d, c) since we have T(d), and finally Specification on (5) to get (S(d, c) 
∧ S(c, r)) → S(d, r) and Conjunction and Modus Ponens to get S(d, r).

• Once we have these four facts we use Existence twice to get our desired 
conclusion ∃x: ∃y: R(x) ∧ S(y, x) ∧ T(y) ∧ W(y).


