
CMPSCI 250: Introduction to Computation

Lecture #8: Proofs With Quantifiers
David Mix Barrington
8 February 2012

Proofs With Quantifiers

• The Meaning of Quantifier Proofs

• The Four Proof Rules

• Instantiation: Eliminating ∃

• Existence: Introducing ∃

• Specifation: Eliminating ∀

• Generalization: Introducing ∀

• The Dog Example

The Meaning of Quantifier Proofs

• A quantified statement talks about a particular situation -- a set of objects
divided into data types, and some predicates with arguments from particular
types. For every legal atomic statement, which is a predicate with
arguments of the proper type filled in, we need to have the truth value
defined.

• We may also have constants -- values from specific types that are given
names.

• Our final example today will have a set of dogs D, three unary predicates on
dogs W(x) “x likes walks”, R(x) “x is a Rottweiler”, and T(x) “x is a terrier”, and
a binary predicate S(x, y) “dog x is smaller than dog y”. We will also have
two constants of type D, Cardie (c) and Duncan (d). There are an infinity of
possible models of these predicates -- we want to show that any model that
satisfies our premises also satisfies our conclusion.

The Four Proof Rules

• In the Forward-Backward method, we have one statement that we want to go
forward from, and another we want to go backward from. The structure of
these statements lets us know what kind of quantifier proof rule we can use.
In particular, the outermost quantifier controls what we can do.

• To go forward from a universal statement, we want to eliminate the universal
quantifier, that is, go from ∀x: P(x) to P(a). To go forward from an existential
statement, we want to eliminate the ∃, going from ∃x: P(x) to P(a). The rules
of Specification and Instantiation will allow us to do this, but we must be
careful of our context and the meaning of our variables.

• To go backward from a universal statement, we want to prove ∀x: P(x),
introducing a universal quantifier. The rule of Generalization lets us do this,
and the rule of Existence lets us introduce an existential and prove ∃x: P(x).

Instantiation: Eliminating ∃

• Given the premise “there exists a dog that is a terrier” (∃x: T(x)), the rule of
Instantiation lets us derive a statement T(a), eliminating the quantifier.

• In English, we would say “let a be the dog that exists by the premise, so that
we know T(a)”. Here “a” must be a new variable, referring to a new dog. We
don’t know whether that new dog is equal to any old dogs, or whether any of
the other predicates are true for it. We know only its type and the fact T(a)
that we got from the statement we instantiated.

• In essence we are giving a name to one of the dogs, who may or may not be
one of the dogs we already know something about. A common error is to say
something like “a terrier exists, therefore that terrier is Duncan”, claiming a
name or a property of the instantiated object with no justification.

Existence: Introducing ∃

• How do we prove a statement like ∃x: P(x), introducing an existential
quantifier? The rule of Existence says that from any statement of the form
P(a), we can derive ∃x: P(x). For example, given the premise “Duncan is a
terrier (T(d)), we can derive “there exists a dog that is a terrier” (∃x: T(x)).

• We have to be careful to introduce the existential quantifier so that its scope
covers the entire statement that we are using. If I have premises T(d) and
R(c), for example, I could derive ∃x: T(x) and ∃x: R(x). But it would be a
mistake to derive ∃x: (T(x) ∧ R(x)), “there is a dog that is both a terrier and a
Rottweiler”. To get that I would need a single statement T(a) ∧ R(a), with the
same a in both places.

• If I have ∃x:(T(x) ∧ R(x)), and I want to derive ∃y: T(y), I should first use
Instantiation to say T(a) ∧ R(a) for some a, then separation to get T(a), then
Existence. There is no rule to go directly from this premise to this conclusion,
and being sloppy with these rules can lead to errors.

Specification: Eliminating ∀

• If we have a universal statement of the form ∀x: P(x), then the rule of
Specification allows us to derive P(a), where a is any constant or variable of
the same type as x. That is, we can derive P(a) for an a of our choice.

• If we have the statement ∀x: W(x),“all dogs like walks”, we can derive W(d),
W(c), or W(y) for a free variable y that already appears in other statements.

• The one caveat to remember is that in principle we remove one universal at a
time, and when we remove it we must set all occurrences of the bound
variable to the same value. Given, say, ∀x: W(x) ∧ S(x, d) ∧ (T(y) → S(y, x)), we
could derive W(c) ∧ S(c, d) ∧ (T(y) → S(y, c) or W(y) ∧ S(y, d) ∧ (T(y) → S(y, y),
but we couldn’t replace some x’s with c’s and others with y’s. The one thing
we can’t do is set x to an existing bound variable -- we could not go from ∀x:
∀y: T(y) → S(x, y) to ∀y: T(y) → S(y, y). This is because the bound y is defined
after we set the value of x, so we can’t force the two to be the same.

Generalization: Introducing ∀

• We’ve just seen that universal statements are very powerful, so it stands to
reason that we should have to work harder to prove them. The rule of
Generalization allows us to prove new universal statements.

• To prove a statement ∀x: P(x), we first say “let y be arbitrary”, where y is a
new variable of the type of x. We then have to prove that P(y) is true, without
using any information about y other than its type. If we do this, we may then
derive ∀x: P(x).

• We most often use this in the form ∀x: (P(x) → Q(x)), so that we let y be
arbitrary and then have to prove P(y) → Q(y). To do this we can assume P(y)
and use it to derive Q(y), which may be possible if P and Q are related. When
we do mathematical induction, we will prove statements of the form ∀x: P(x),
where x is a natural, in part by proving ∀x: (P(x) → P(x+1)).

The Dog Example
• We have a set of dogs D, and predicates R(x) “x is a Rottweiler”, T(x) “x is a

terrier”, S(x, y) “x is smaller than y”, W(x) “x likes to go for walks”.

• Premises: (1) All dogs like to go for walks (∀x: W(x)), (2) Duncan is a terrier
(T(d)), (3) Cardie is smaller than some Rottweiler (∃x: R(x) ∧ S(c, x)), (4) All
terriers are smaller than Cardie (∀x: T(x) → S(x, c)) (5) S is transitive (∀x: ∀y:
∀z: (S(x, y) ∧ S(y, z)) → S(x, z).

• Desired conclusion: There exists a Rottweiler that is larger than some terrier
who likes walks (∃x: ∃y: R(x) ∧ S(y, x) ∧ T(y) ∧ W(y)).

• Overall strategy: Figure out which dogs x and y ought to be -- maybe
constants, maybe dogs forced to exist by the premises. In this case y should
be Duncan, and x should be the Rottweiler provided by premise (3).

More of the Dog Example

• We use Instantiation on (3) to get a dog r such that R(r) ∧ S(c, r).

• We need four facts about d and r: We have R(r), and we need W(d), T(d), and
S(d, r).

• We have T(d) by (2), and we get W(d) by Specification on (1).

• To get S(d, r), we use Specification on (4) to get T(d) → S(d, c), Modus Ponens
to get S(d, c) since we have T(d), and finally Specification on (5) to get (S(d, c)
∧ S(c, r)) → S(d, r) and Conjunction and Modus Ponens to get S(d, r).

• Once we have these four facts we use Existence twice to get our desired
conclusion ∃x: ∃y: R(x) ∧ S(y, x) ∧ T(y) ∧ W(y).

