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Quantifier Definitions

• Suppose that P(x) is a predicate, where x is a variable of type T.  For example, 
T might be a set of dogs and P(x) might mean “dog x is a poodle”.

• The quantified statement ∃x: P(x) means “there exists a dog x such that x is 
a poodle”, or “there is at least one poodle in T”. The symbol “∃” is called the 
existential quantifier.

• The quantified statement ∀x: P(x) means “for all dogs x, x is a poodle” or 
“every dog in T is a poodle”.  The symbol ∀ is the universal quantifier.

• Each quantifier binds a free variable, making it a bound variable.  Both the 
statements ∃x: P(x) and ∀x: P(x) are propositions, as they have no free 
variables -- they are either true or false once T and P are defined.



Translating Quantifiers

• We translate quantified statements into English very carefully and 
mechanically -- after making a first translation we can adapt to something 
that sounds more natural.

• In translating “∃x: P(x)”, we say “there exists an x” for “∃x”, “such that” for the 
colon, and then translate P(x).  If we want to emphasize the type of x, we 
might say “there exists an x of type T such that P(x) is true”.  In our example, 
this was “there exists a dog x such that x is a poodle”.

• In translating “∀x: P(x)”, we say “for all x” for “∀x”, nothing for the colon (it 
becomes a comma), and then translate P(x).  Again we may emphasize the 
type -- “for all x of type T, P(x) is true”.  In the example, “for all dogs x, x is a 
poodle”.

• If there are multiple quantifiers the rules for translating the colon change a bit.



Types and the Universe of Discourse

• The type of the bound variable is an important part of the meaning of a 
quantified statement.  Every variable is typed, and “there exist” and “for all” 
refer to the type whether or not we state this in our translation.  Traditionally 
logicians have referred to the type as the universe of discourse for the 
variable.

• This is particular important for universal quantifiers.  The statements “all deer 
have antlers” and “all animals have antlers” have different meanings but might 
both be written ∀x: A(x) -- the difference would be the type of the variable x.

• We can quantify over types that contain no elements -- let’s take the set U of 
unicorns as our example.  Any statement of the form ∃x: P(x) is false if the 
type of x is U, as it says “there exists a unicorn such that” something.  But 
any statement of the form ∀x: P(x) is true.  It is true that all unicorns are green, 
and also true that all unicorns are not green.  (For that matter, it is true that all 
unicorns are both green and not green -- ∀x: G(x) ∧ ¬G(x) in symbols.)



Some Quantifier Rules

• Whenever our original predicate has more than one free variable, we need 
more than one quantifier to bind them and form a proposition.  Let D be a set 
of dogs and C be a set of colors, and let H(d, c) mean “dog d has color c”.

• If I say ∃d: ∃c: H(d, c), this means “there exists a dog c and a color c such 
that d has c”.  Note that the first colon translates as “and” rather than as 
“such that”.  If we instead said ∃c: ∃d: H(d, c), this would mean exactly the 
same thing.  Similarly ∀d: ∀c: H(d, c) and ∀c: ∀d: H(d, c) both mean “every 
dog has every color.  We can switch similar adjacent quantifiers, but we will 
soon see that switching dissimilar quantifiers changes the meaning.

• We have two “Quantifier DeMorgan” rules to relate quantifiers to negation.  
We can simplify ¬∃x: P(x) as ∀x: ¬P(x), and ¬∀x: P(x) as ∃x: ¬P(x).  A universal 
statement is true if and only if there is not a counterexample to it.  This rule 
explains the convention about empty types: “All unicorns are green” is 
equivalent to “there does not exist a non-green unicorn” which is clearly true.



Multiple Quantifiers

• Let’s look more closely at the effect of multiple dissimilar quantifiers.  Let x 
and y be of type natural and consider x ≤ y, which has two free variables.

• If we say ∃x: x ≤ y, this statement still has y as a free variable, so its meaning 
depends on y.  It says that there is a natural less than or equal than y, which is 
true for any y (take y itself).  Similarly ∃y: x ≤ y has free variable x and is true 
for any x.  We can also form ∀x: x ≤ y, which is never true for any y, and finally 
∀y: x ≤ y which is true if x = 0 but false for any other x.

• We can make propositions from any of these four statements by quantifying 
the remaining free variable.  The statements ∃x: ∃y: x ≤ y and ∀x: ∀y: x ≤ y are 
true and false respectively, and can have their quantifier order switched.  
More interesting are ∀y: ∃x: x ≤ y (true), ∀x: ∃y: x ≤ y (true), ∃y: ∀x: x ≤ y 
(false), and ∃x: ∀y: x ≤ y (true, as x could be 0).  The last two examples show 
that switching dissimilar quantifiers can change the meaning.



Languages and Language Operations

• Recall that for any finite alphabet Σ we have defined the set Σ* of all strings 
made up of a finite sequence of letters from Σ, and defined a language over Σ 
to be any subset of Σ*, that is, any set of strings.  Here we’ll have Σ = {a, b}.

• Because languages are sets, we can use all the set operators on them.  If X is 
all strings beginning with a, and Y is all strings ending in b, then X ∪ Y is the 
set of all strings that begin with a or end in b, and X ∩ Y is the set of all strings 
that both begin with a and end in b.  Similarly, we can define X ∆ Y, X ∖ Y, and 
the complements of X and Y respectively.  For example, the complement of X 
is the set of all strings that don’t begin with a (including the empty string λ).

• With quantifiers, we can define some additional operations on languages that 
will be useful later for defining regular expressions and thus the regular 
languages.



Concatenation of Languages

• Again let X = {w: w begins with a} and Y = {w: w ends in b}.  We’ll now define the 
concatenation product (or just concatenation) of two languages.  In this case 
XY is the language {w: ∃u: ∃v: (w = uv) ∧ (u ∈ X) ∧ (v ∈ Y)}.  A string w is in XY if it 
is possible to split it as a string in X followed by a string in Y.  It is not hard to see 
that in this particular case, XY = X ∩ Y.  Any string in XY must both begin with a 
and end with b, and any string with these two properties can be split into a 
string in X and a string in Y.

• Unlike most “multiplication” operations, concatenation is not commutative.   The 
language YX is {w: ∃u: ∃v: (w = uv) ∧ (u ∈ Y) ∧ (v ∈ X)}.  Strings in YX need not 
begin with a or end in b -- in fact a string is in YX if and only if it has a b that is 
immediately followed by an a.

• If we let “a” and “b” denote the languages {a} and {b}, with one string each, 
what is the language aΣ*b?  Or Σ*baΣ*?



The Kleene Star Operation

• In algebra we say “xk” to denote the product of k copies of x.  Similarly in 
language theory, if X is a language, we abbreviate the concatenation product XX 
as “X2”, XXX as “X3”, and so forth.  It turns out that if we treat concatenation as 
“multiplication” and union as “addition”, the distributive law holds, and we can 
use algebraic rules to get facts like (X + Y)2 = X2 + XY + Y2. (We don’t say “2XY” 
because “XY + XY” just equals XY -- the union of a language with itself is just 
itself.)

• X0 is a special case -- “not multiplying” gives us the multiplicative identity, which 
turns out to be the language {λ}.  (Check that {λ}X = X for any language X.)

• It’s convenient sometimes to talk about the language X0 + X1 + X2 + X3 + ..., 
which is the set of all strings that can be made by concatenating together any 
number of strings from X.  We call this language X*, the Kleene star of X.  We’ve 
used this notation already when we defined Σ* to be the set of all strings from Σ. 


