
CMPSCI 250: Introduction to Computation

Lecture #5: Strategies for Propositional Proofs
David Mix Barrington
1 February 2012



Strategies for Propositional Proofs

• The Forward-Backward Method

• Transforming the Proof Goal

• Contrapositives and Indirect Proof

• Proof By Contradiction

• Hypothetical Syllogism: Two Proofs in Series

• Proof By Cases: Two Proofs in Parallel

• An Example: Exercises 1.8.3 and 1.8.4



The Forward-Backward Method

• In an equational sequence or a deductive sequence proof, we begin with one 
compound proposition, our premise, and we want to get to another, our 
conclusion, by applying rules.  We are in effect searching through a path in a 
particular space, where the points are compound propositions and the moves 
are those authorized by the rules.

• The forward-backward method (first named, AFAIK, by Daniel Solow in his 
How to Read and Do Proofs) is a way of breaking down this search.  Given a 
search from P to C, we can look for a forward move, which is some 
compound proposition P’ where we can move from P to P’.  This reduces our 
search to getting from P’ to C.  A backward move is some C’ such that we 
can move from C’ to C.  This reduces our search to getting from P to C’.

• If a forward or backward move is well chosen, it gets us to an easier search.  
If it is not, it gets us to a harder search.  How to tell?  In general there is no 
firm guideline, but we’d like to make the ends of the new search more similar.



Transforming the Proof Goal

• Some of the rules we listed last time help us transform a proof goal in other 
ways.  Again suppose we are trying to get from P to C.  Suppose we can 
prove C without using the assumption P.  In this case P → C is true -- the 
tautology C → (P → C) is called the rule of trivial proof.  This does actually 
happen -- our breakdowns of proofs sometimes leaves very easy pieces.

• Similarly we may be able to prove ¬P, and since ¬P → (P → C) is a tautology, 
called the rule of vacuous proof, this is good enough to prove P → C.  For 
example, we can prove “If this animal is a unicorn, it is green” in this way.

• An equivalence P ↔ C is often proved by two deductive sequence proofs 
rather than a single equational sequence proof.  The equivalence and 
implication rule says that (P ↔ C) ↔ ((P → C) ∧ (C → P)).  This allows us to 
prove an “if and only if” by “proving both directions” of the equivalence.



Contrapositives and Indirect Proof

• Assuming P and using it to prove C is called a direct proof of P → C.  
Sometimes we may find it easier to work with the terms of C than those of P.  
If we assume ¬C and use it to prove ¬P, we have made a direct proof of the 
implication ¬C → ¬P.  But this implication, called the contrapositive of the 
original P → C, is equivalent to the original.  So proving ¬P from ¬C is 
sufficient to prove P → C, and this is called an indirect proof.

• Be very careful to use the contrapositive rather than other, related 
implications that are not equivalent to P → C.  Simply reversing the arrow 
gets you C → P, the converse of P → C, which may well be true when P → C 
is false, or vice versa.  Simply taking the negation of both sides gives you ¬P 
→ ¬C, the inverse  of P → C, which is not equivalent to P → C either.  (In fact 
the converse is the contrapositive of the inverse and vice versa, so they are 
equivalent to each other.)  You need to both reverse the arrow and negate 
both sides to get the contrapositive.



Proof by Contradiction

• In last Friday’s discussion we saw an example of proof by contradiction, 
when we assumed that some natural number was neither even nor odd.  We 
wound up using this assumption to prove that there was a “neither number” 
that was smaller than the smallest “neither number”, which is impossible.

• The negation of the implication P → C is P ∧ ¬C, because the only way the 
implication can be false is if the premise is true and the conclusion false.  If 
we can assume P ∧ ¬C and prove 0, the always false proposition, we have 
made a direct proof of the implication (P ∧ ¬C) → 0, and one of our rules says 
that (P → C) ↔ ((P ∧ ¬C) → 0) is a tautology.

• The reason we might want to do this is that the more assumptions we have, 
the more possible steps we have available.  Trying proof by contradiction is 
often a good way to get started.  But it’s important to keep track of what the 
assumption was, so we know exactly what we are proving to be false.



Hypothetical Syllogism: Two Proofs in Series

• Our use of an arrow for implication certainly suggests that implication is 
transitive -- that if we can get from P to Q and we can get from Q to C, then 
we can get from P to C.  And in fact ((P → Q) ∧ (Q → C)) → (P → C) is a 
tautology, called the rule of Hypothetical Syllogism.

• This means that we can pick an intermediate goal for our proof -- if we pick a 
useful Q, it may be easier to figure out how to get from P to Q and how to get 
from Q to C than to figure out how to get from P to C all at once.

• But a bad choice of intermediate goal could make things worse -- the two 
subgoals might be harder to find or even impossible.  The rule of hypothetical 
syllogism is an implication, not an equivalence.  It is possible for P → C to be 
true and for one or both of P → Q or Q → C to be false.



Proof by Cases: Two Proofs in Parallel

• Another way to break up a proof problem into smaller problems is case 
analysis.  If R is any proposition at all, and P → C is true, then the two 
implications (P ∧ R) → C and (P ∧ ¬R) → C are both true.  Furthermore, if we 
can prove both of these propositions, the Proof by Cases rule tells us that 
(((P ^ R) → C) ∧ ((P ∧ ¬R) → C)) → (P → C) is a tautology.

• The way this works in practice is that you just say “assume R” in the middle 
of your proof, and carry on to get C.  But now you have assumed P ∧ R rather 
than just P, so you have proved only (P ∧ R) → C.  You need to start over and 
this time “assume ¬R”, completing a separate proof of (P ∧ ¬R) → C.

• You can break cases into subcases, and subsubcases, and so on.  Of course 
the ultimate case breakdown is into 2k subcases, one for each setting of the k 
atomic variables.  This is just a truth table proof!



An Example: Exercises 1.8.3 and 1.8.4

• Let P be the compound proposition p ∧ q and let C be p ∨ q.  Of course we 
could verify (p ∧ q) → (p ∨ q) by truth tables, but let’s look at how to approach 
the problem using our various strategies.

• Neither trivial nor vacuous proof will work.  Let’s try Hypothetical Syllogism.  If 
we pick p as our intermediate goal, we can get from p ∧ q to p by Left 
Separation, and from p to p ∨ q by Right Joining.

• Let’s try Proof by Cases, with p as the intermediate proposition.  If we 
assume that p is true, we can prove p ∨ q by Right Joining, and this gives us 
a trivial proof of the original implication.  If we assume that p is false, then its 
easy to show that p ∧ q is false, giving us a vacuous proof of the original.

• Using Proof by Contradiction, we assume both p ∧ q and ¬(p ∨ q).  The 
second assumption turns to ¬p ∧ ¬q by DeMorgan, and we can get 0 out of p 
∧ q ∧ ¬p ∧ ¬q by associativity, commutativity, Excluded Middle, and 0 rules.


