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The Halting Problem and Unsolvability

• Proving Something to be Impossible

• Representing TM’s By Strings

• The Universal Turing Machine

• The Barber of Seville Language

• Undecidable and Non-Recognizable Languages

• Getting More Undecidable Languages

• Turing Complete Languages



Proving Something to Be Impossible

• When a problem can be solved with a particular set of resources, we can 
prove this to be the case by showing how to do it.

• But what about when a problem can’t be solved with those resources?  We 
can’t just show algorithms that don’t work, because these don’t rule out the 
existence of other algorithms that do.  

• We have one example in this course -- if a language cannot be decided by a 
DFA, the Myhill-Nerode Theorem can be used to prove it.  This also shows 
that the language has no regular expression.

• Gödel proved in 1931 that there is a true statement of number theory that 
can’t be proved (or a false statement that can be proved).  The idea is that the 
statement can be interpreted as “I am not provable”.



Proving Limits on Turing Machines

• By the Church-Turing Thesis, if we prove that no Turing machine can decide a 
particular language, that means that no algorithm can decide it.

• Deciding a language means solving a general class of problems, not just a 
single instance.  

• The basic idea is called diagonalization, for reasons we won’t be able to go 
into here.  Like the Gödel argument, we get a contradiction out of applying a 
hypothetical Turing machine to itself.  The assumption that our target problem 
is decidable leads to this contradiction, so it is false and the problem is not 
decidable.

• To formulate this argument, we will have to say more about Turing machines 
that take other Turing machines as input.



The Universal Turing Machine

• We could, with some effort, formalize a scheme for representing Turing 
machines by strings.  We would need the string to code the number of states, 
the number of letters in the input alphabet and in the tape alphabet, the 
special states, and the transition function.  

• It doesn’t really matter how this information is stored, as long as it’s possible 
for an algorithm (and therefore a Turing machine) to answer questions about 
the states and transition function.

• Once this is done, it is possible to build a universal Turing machine.  This 
machine takes two inputs, a Turing machine M and a string w over M’s input 
alphabet.  It simulates the action of M on w, accepting or rejecting if and only 
if M would accept or reject w.

• Now we have a Turing machine that acts on Turing machines.



The Barber of Seville Language

• The Barber of Seville shaves exactly those men of Seville who do not shave 
themselves.  Bertrand Russell proposed this statement as a logical paradox.

• If the barber is a man of Seville who does not shave himself, the rule obligates 
him to shave himself.  And if he is a man of Seville who does shave himself, 
the rule forbids him to shave himself.

• The only solution is that he is not from Seville, or that she is not a man.

• Define the Barber of Seville language to be the set of TM’s that do not 
accept themselve -- formally, LBS is the set {M: M ∉ L(M)} or {M: (M, M) ∉ L(U)} 
where U is the universal TM. 

• A Barber of Seville Turing machine would be a TM MBS such that  L(MBS) = 
LBS, a TM that accepts exactly those TM’s that don’t accept themselves.



Undecidable and Non-Recognizable Languages

• Just as the Barber can’t be a man of Seville, the machine MBS cannot exist.  If 
it did, MBS either would accept MBS or it wouldn’t.  If it does, by definition it 
doesn’t, and if it doesn’t, by definition it does.

• This tells us that the language LBS is not Turing recognizable because it is not 
the language of any Turing machine.  Since all decidable languages are also 
recognizable, LBS is not decidable either.

• But note that the language LBS-bar is recognizable.  It is the union of the set 
of strings that don’t code Turing machines at all, and the set of TM’s that do 
accept themselves.  We can recognize the latter set by taking any machine M 
and feeding the pair (M, M) to the universal TM.  The former set is decidable, 
assuming that we have defined our coding scheme unambiguously.

• So we have an example of a language that is recognizable but not decidable.



Getting More Undecidable Languages

• Of course it would be much more interesting to have an undecidable 
language that we actually might have wanted to decide.  

• We can do this by the method of reduction.  Given a language X, we prove 
that we could decide LBS if we had a decider for X.  Then since the decider for 
LBS  cannot exist, the decider for X cannot exist either.

• For example, let Lhalt be the set of pairs (M, w) such that M is a TM that 
eventually halts on the input string w.  Suppose I had a decider for Lhalt.  
Given any Turing machine M, I can now decide whether M is in LBS by forming 
the pair (M, M) and feeding it to the Lhalt decider.  If the decider says that M 
will not halt on M, then M is in LBS.  If it will halt, I can then run M on M and 
see whether it accepts, knowing that this computation will not run forever. 

• As we build up a library of undecidable languages, we can use any of them in 
place of LBS in this kind of argument.



Turing Complete Languages

• In CMPSCI 311 and 401, you will spend a lot of time with the concept of 
complete languages for a class.  

• Lhalt turns out to be Turing complete, or complete for the set of recognizable 
languages.  We can take any recognizable language X, and any string w, and 
transform w into a string f(w) such that w is in X if and only if f(w) is in Lhalt.

• This means that the language Lhalt captures every possible Turing 
recognizable computation.

• The class NP or nondeterministic polynomial time is the set of languages 
that are recognized by nondeterministic Turing machines in polynomial time.  
If we prove a language to be NP-complete by showing that any NP language 
can be reduced to it, we are pretty sure that it is not actually decidable in 
polynomial time by a deterministic TM.  This is because if it were the classes 
P and NP would be the same, and we are pretty sure that they are not.


