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• Applying the Construction to No-aba
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Kleene’s Theorem: What and Why?

• We have now defined two classes of formal languages -- regular languages 
that are denoted by regular expressions, and what we will call recognizable 
languages that are decided by a DFA.  Kleene’s Theorem, the subject of the 
next several lectures, says that these two classes are the same.

• Mathematically, it’s interesting that two classes with such different definitions 
should turn out to coincide -- it suggests that the class is important.  But the 
theorem also has practical consequences.

• It’s easy to see that the regular languages are closed under union, 
concatenation, and star, and that the recognizable languages are closed 
under complement and intersection.  The theorem tells us that both classes 
have all these closure properties.

•  The efficient way to test whether a string is in a regular language is to create 
the DFA for the language and run it on the string.



Nondeterministic Finite Automata

• DFA’s are deterministic in that the same input always leads to the same 
output.  Some algorithms are not deterministic because they are randomized, 
but here we will consider “algorithms” that are not deterministic because they 
are underdefined -- given a single input, more than one output is possible.

• We had an example of such an algorithm with our generic search, which 
didn’t say which element came off the open list when we needed a new one.

• Formally, a nondeterministic finite automaton or NFA has an alphabet, 
state set, start state, and final state just like a DFA.  But instead of the 
transition function δ, it has a transition relation ∆ ⊆ Q × Σ × Q.  If (p, a, q) ∈ 
∆, the NFA may move to state q if it sees the letter a while in state p.  We 
draw an NFA like a DFA, with an a-arrow from p to q whenever (p, a, q) ∈ ∆.  
The NFA no longer has the rule that there must be exactly one arrow for each 
letter out of each state -- there may be more than one, or none.



The Language of an NFA

• We can no longer say what the NFA will do when reading a string, only what it 
might do.  The language of an NFA N is defined to be the set {w: w might be 
accepted by N}.  More formally, we define a relation ∆* ⊆ Q × Σ × Q so that 
the triple (p, w, q) is in ∆* if and only if N might go from p to q while reading w. 
Then w ∈ L(N) ↔ (i, w, f) ∈ ∆* for some final state f ∈ F.

• Consider the NFA N with state set {i, p, q}, start state i, final state set {i}, 
alphabet {a, b, c}, and ∆ = {(i, a, i), (i, a, p), (p, b, i), (i, b, q), (q, c, i)}.  This is 
nondeterministic because there are two a-moves out of i, and several 
situations with no move at all.  Here L(N) is the regular language (a + ab+ bc)*, 
because any path from i to itself must consist of pieces labeled a, ab, or bc.

• It is not immediately clear how, for a larger NFA, we could determine whether 
a particular string was in L(N).  Our method will be to turn N into a DFA.



Interpretations of Nondeterminism

• Because we can’t speak clearly of “what happens when we run N on w”, we 
need other ways to think of the action of an NFA.

• In our proofs, we will just replace “w ∈ L(N)” by “∃f: (i, w, f) ∈ ∆*” and argue 
about the possible w-paths in the graph of N.

• We can think of N as being randomized, so that whenever it has a choice of 
moves it selects one of them uniformly at random.  (This essentially makes N 
a Markov process, as studied in CMPSCI 240.)  Then we could speak of the 
probability that N accepts w, and w ∈ L(N) if and only if this probability is 
greater than 0.

• We can think of the action of N on w as a one-player game where White, 
who want N to accept w, chooses each move from the set of legal options.  
Then White has a winning strategy for this game if and only if w ∈ L(N).



The Model of λ-NFA’s

• The main reason to use NFA’s is that they are easier to design in many 
situations when we have some other definition of the language.  Often we will 
find it convenient to give the NFA the option to jump from one state to 
another without reading a letter.  

• A λ-move is a transition (p, λ, q)  that allows a λ-NFA to do just that.  We 
need to redefine the type of ∆, so that it is a subset of Q × (Σ ∪ {λ}) × Q.  In the 
diagram, this transition is represented by an arrow from p to q labeled with λ.

• Formally ∆* is now more complicated to define.  We say that (p, λ, q) ∈ ∆*  if 
there is a path of λ-moves from p to q.  Then we define ∆*(p, wa, q) to be true 
if and only if there exist states r, s, and t such that (p, w, r), (r, λ, s) and (t, λ, q) 
are all in ∆*, and (s, a, t) is in ∆.  What this means is that ∆*(p, w, q) is true if 
and only if there exists a path from p to q such that the letters on the path, 
read in order, spell out w.  There may be any number of λ-moves in the path 
as well.  (Thus we don’t even know how long the path from p to q might be.)



The Subset Construction: NFA’s to DFA’s

• Next lecture we’ll see how to convert λ-NFA’s to ordinary NFA’s.  Now, though, 
we will convert ordinary NFA’s to DFA’s using the Subset Construction.  Given 
an NFA N with state set Q, we will build a DFA D whose states will be sets of 
states of N -- formally, D’s state set is the power set of Q.

• Here’s an example of an NFA N for the language (0 + 01)*, with two states i 
and p, start state i, final state set {i}, and transitions (i, 0, i), (i, 0, p), and (p, 1, i).

• At the start of its run, N must be in state i.  If the first letter is 0, then it might 
be in either state i or p after reading the 0.  If the first letter is 1, there is no run 
of N that reads that letter.

• Our DFA D has states ∅, {i}, {p}, and {i, p}.  Its start state is {i}, its final states 
are {i} and {i, p}, and we have δ({i}, 0) = {i, p}, δ({i}, 1) = ∅, δ({i, p}, 0) = {i, p}, 
δ({i, p}, 1) = {i}, δ({p}, 0) = ∅, δ({p}, 1) = {0}, and δ(∅, a) = ∅ for both letters.



Details of the Construction

• The general construction works just like this example.  The start state of D is 
{i}, where i is the start state of N.  The final state set of D is the set of all states 
of D that contain final states of N, since we want D to accept if N can accept.

• In general, we need to define δ(S, a) where S is a state of D, meaning that S is 
a set of states of N.  S represents the possible places N might be before 
reading the a.  The set T = δ(S, a) will be the set of all states q such that the 
transition (s, a, q) is in ∆ for some s ∈ S.  In the graph, we take the set of 
destinations of all the a-arrows that start from a state of S.  

• The most common mistake in computing δ comes when one of the states in 
S has no a-arrows out of it.  Students often think that ∅ must now be part of 
δ(S, a).  But in fact δ(S, a) is the union of the sets {q: ∆(s, a, q)} for each s ∈ S. 
So the empty set is part of the result, but doesn’t show up in the description 
of the result because unioning in ∅ is the identity operation on sets.



Applying the Construction to No-aba

• The language Yes-aba has an easy regular expression Σ*abaΣ*.  From this 
expression we can build an NFA N with state set {1, 2, 3, 4}, start state 1, final 
state set {4}, and ∆ = {(1, a, 1), (1, b, 1), (1, a, 2), (2, b, 3), (3, a, 4), (4, a, 4), (4, b, 
4)}.  But what if we want a machine for No-aba?  Switching the final and non-
final states of N will not do -- can you see why?

• The best way to get a DFA for No-aba is to first get one for Yes-aba.  We begin 
with the start state {1} and compute δ({1}, a) = {1, 2} and δ({1}, b) = {1}. Then we 
compute δ({1, 2}, a) = {1, 2} and δ({1, 2}, b) = {1, 3}.  Since {1, 3} is new, we 
must compute δ({1, 3}, a) = {1, 2, 4} and δ({1, 3}, b) = {1}.  Then we get δ({1, 2, 
4}, a) = {1, 2, 4} and δ({1, 2, 4}, b) = {1, 3, 4}.  Not done yet!  We have δ({1, 3, 4}, 
a) = {1, 2, 4} and δ({1, 3, 4}, b) = {1, 4}.  Finally, with δ({1, 4}, a) = {1, 2, 4} and 
δ({1, 4}, b) = {1, 4}, we are done -- the other states are unreachable.

• Clearly if we minimized this DFA, the three final states would merge into one.  
This gives us our familiar four-state DFA for Yes-aba, from which we can get 
one for No-aba.



The Validity of the Construction

• How can we prove that for any NFA N, the DFA D that we construct in this 
way has L(D) = L(N)?  

• The key property of D is that for any string w, δ*({i}, w) is exactly the set of 
states {q: ∆*(i, w, q)} that could be reached from i on a w-path.  We prove this 
property by induction -- it is clearly true for λ (though if we had λ-moves it 
would not be).  If we assume that δ*({i}, w) = {q: ∆*(i, w, q)}, we can then prove 
δ*({i}, wa) = {r: ∆*(i, wa, r)} for an arbitrary letter a, using the inductive 
definition of δ* in terms of δ, of δ in terms of ∆, and of ∆* in terms of ∆.

• Once this is done, it is clear that w ∈ L(D) ↔ ∃f: f ∈ δ*({i}, w) ↔ ∃f: ∆*(i, w, f) ↔ 
w ∈ L(N).

• Note that in general D could have 2k states when N has k states.  But if we 
don’t generate unreachable states, D could turn out to be much smaller.


