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Review: L-Distinguishable Strings

• Let L ⊆ Σ* be any language.  Two strings u and v are L-distinguishable (or L-
inequivalent) if there exists a string w such that uw ∈ L ⊕ vw ∈ L.  They are L-
equivalent if for every string w, uw ∈ L ↔ vw ∈ L (we write this as u ≡L v).

• We proved last time that if a DFA takes two L-distinguishable strings to the 
same state, it cannot have L as its language.  So if S is a set of pairwise L-
distinguishable strings, then any DFA that has L as its language must have at 
least as many states as S has strings.

• If S is an infinite set of pairwise L-distinguishable strings, no correct DFA for L 
can exist at all.  For example, the language Paren ⊆ {L, R}* has such a set,  
{Li: i ≥ 0}, because if i ≠ j then LiRi is in Paren but LjRi is not.  So any two 
distinct strings in the set are L-distinguishable.  No DFA for Paren exists, and 
thus Paren is not a regular language.



The Language Prime Has No DFA

• Let Prime be the language {an: n is a prime number}.  It doesn’t seem likely 
that any DFA could decide Prime, but this is a little tricky to prove.

• Let i and j be two naturals with i > j.  We’d like to show that ai  and aj are 
Prime-distinguishable, by finding a string ak such that aiak ∈ Prime and ajak ∉ 
Prime.  We need a natural k such that i + k is prime and j + k not, or vice versa.

• Pick a prime p bigger than both i and j (since there are infinitely many primes).  
Does k = p - j work?  It depends on whether i + (p - j) is prime -- if it isn’t we 
win because j + (p - j) is prime.  If it is prime, look at k = p + i - 2j.  Now j + k is 
the prime p + (i - j), so if i + k = p + 2(i - j) is not prime we win.

• We find a value of k that works unless all the numbers p, p + (i - j), p + 2(i - j),..., 
p + r(i - j),... are prime.  But p + p(i - j) is not prime as it is divisible by p.



The Relation of L-Equivalence

• The relation of L-equivalence is aptly named because we can easily prove 
that it is an equivalence relation.  Clearly ∀w: uw ∈L ↔ uw ∈ L, so it is 
reflexive.  If we have that ∀w: uw ∈ L ↔ vw ∈ L, we may conclude that ∀w: vw 
∈ L ↔ uw ∈ L, and thus it is symmetric.  Transitivity is equally simple to prove.

• We know that any equivalence relation partitions its base set into 
equivalence classes.  The Myhill-Nerode Theorem says that for any 
language L, there exists a DFA for L with k or fewer states if and only if the L-
equivalence relation’s partition has k or fewer classes.  That is, if the number 
of classes is a natural k then there is a minimal DFA with k states, and if the 
number of classes is infinite then there is no DFA at all.

• It’s easiest to think of the theorem as “k or fewer states ↔ k or fewer classes”.



More Than k Classes Means More Than k States

• We’ve essentially already proved half of this theorem.  We can take “k or 
fewer states → k or fewer classes” and take its contrapositive, to get “more 
than k classes → more than k states”.  

• Let L be an arbitrary language and assume that the L-equivalence relation has 
more than k (non-empty) equivalence classes.  Let x1,...,xk+1 be one string 
from each of the first k + 1 classes.  Since any two distinct strings in this set 
are in different classes, by definition they are not L-equivalent, and this means 
that they are L-distinguishable.  

• By our result from last lecture, since there exists a set of k + 1 pairwise L-
distinguishable strings, no DFA with k or fewer states can have L as its 
language.  

• This proves the first half of the Myhill-Nerode Theorem.



Constructing a DFA From the Relation

• Now to prove the other half, “k or fewer classes → k or fewer states”.  In fact 
we will prove that if there are exactly k classes, we can build a DFA with exactly 
k states.  This DFA will necessarily be the smallest possible for the language, 
because a smaller one would contradict the half we have proved.

• Let L be an arbitrary language and assume that the classes of the relation are 
C1,..., Ck.  We will build a DFA with states q1,...,qk, each state corresponding to 
one of the classes.

• The initial state will be the state for the class containing λ.  The final states will 
be any states that contain strings that are in L.  The transition function is 
defined as follows.  To compute δ(qi, a), where a ∈ Σ, let w be any string in the 
class Ci and define δ(qi, a) to be the state for the class containing the string wa.

• It’s not obvious that this δ function is well-defined, since its definition contains 
an arbitrary choice.  We must show that any choice yields the same result.



Completing the Proof

• Let u and v be two strings in the class Ci.  We need to show that ua and va 
are in the same class as each other.  That is, for any u, v, and a, we must 
show u ≡L v → ua ≡L va.  Assume that ∀w: uw ∈ L ↔ vw ∈ L.  Let z be an 
arbitrary string.  Then uaz ∈ L ↔ vaz ∈ L, because we can specialize the 
statement we have to az.  We have proved ∀z: uaz ∈ L ↔ vaz ∈ L or ua ≡L va.

• Now we prove that for this new DFA and for any string w, δ*(i, w) = qj ↔ w ∈ 
Cj.  (Here “i” is the initial state of the DFA.)  We prove this by induction on w.  
Clearly δ*(i, λ) = i, which matches the class of λ.  Assume as IH that δ*(i, w) = 
x matches the class of w.  Then for any a, δ*(i, wa) is defined as δ(x, a) which 
matches the class of wa by the definition, which is what we want.

• If two strings are in the same class, either both are in L or both are not in L.  
So L is the union of the classes corresponding to our final states.  Since the 
DFA takes a string to the state for its class, δ*(i, w) ∈ F ↔ w ∈ L.



The Minimal DFA and Minimizing DFA’s

• Let X be a regular language and M be any DFA such that L(M) = X.  We will 
show that the minimal DFA, constructed from the classes of the L-
equivalence relation, is contained within M.  

• We begin by eliminating any unreachable states of M, which does not change 
M’s language. 

• Remember that a correct DFA cannot take two L-distinguishable strings to 
the same state.  So for any state p of M, the strings w such that δ(i, w) = p are 
all L-equivalent to each other.  Each state of M is thus associated with one of 
the classes of the L-equivalence relation.  

• The states of M are thus partitioned into classes themselves.  If we combine 
each class into a single state, we get the minimal DFA.  In discussion today 
we will see, and then practice, a specific algorithm to find these classes and 
thus construct the minimal DFA equivalent to any given DFA.


