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Sets and Venn Diagrams

• Suppose we have multiple sets whose 
elements all come from a single type.

• Each set divides the type into two 
groups -- the elements in the set and the 
elements not in the set.

• Two sets give us four total groups, three 
sets give us eight, four sets give 16, and 
so forth -- k sets make 2k total groups.

• A Venn diagram can represent these 
groups, as with the three sets at left.  On 
the homework, you’ll draw a general 
Venn diagram for four sets.

A Venn Diagram From cubiclebot.com



Carroll Diagrams

• Lewis Carroll (author of Alice in Wonderland) 
was a contemporary of Venn and had his own 
system of diagrams.  

• The top diagram represents the four possible 
combinations of being in the set x or y.  For 
example, region 2 is in y but not in x.

• The bottom diagram includes a third set m, 
inside the central box.  Region 5 is in m and x 
but not in y.  Note the binary for 5, 101, codes 
these three bits: yes-m, no-y, yes-x.

• What about four sets?

Diagrams from hom.wikidot.com



Set Operations

• We have a number of binary operations on sets, that each take two sets as 
input and give one set as output.  

• If X and Y are sets, their union X ∪ Y is the set of all elements in either X or Y, 
and their intersection X ∩ Y is the set of all elements that are in both.

• The symmetric difference X ∆ Y is the set of elements in exactly one of  X 
and Y.  The relative complement X ∖ Y is the elements in X, but not in Y.  
The complement of X (X with a line over it) is the set of elements not in X.

Diagrams from wikipedia.org, “Venn Diagram”

X ∪ Y X ∩ Y X ∆ Y Y ∖ X X complement



Propositions About Sets

• Given two sets X and Y, we can form the propositions X = Y and X ⊆ Y.  We 
can also use the = and ⊆ operators on more complicated sets formed with 
the set operators, for example (X ∖ Y) ∩ (Y ∖ X) = ∅.

• This last statement is an example of a set identity because it is true no 
matter what the sets X and Y are.  Since all the elements of X ∖ Y are in X, 
and none of the elements of Y ∖ X are in X, no element could be in both.

• Equality and subset statements about sets are actually compound 
propositions involving membership statements for the original sets.  For 
example, X = Y means that for any object z of the correct type, the 
propositions z ∈ X and z ∈ Y are either both true or both false: z ∈ X ↔ z ∈ Y.

• Similarly, X ⊆ Y means that for any z, z ∈ X implies z ∈ Y: z ∈ X → z ∈ Y.



Set Identities With Set Operators

• A set statement like (X ∖ Y) ∩ (Y ∖ X) = ∅, using set operations and the 
equality or subset operator, can be translated into a compound proposition.

• We want to say z = (X ∖ Y) ∩ (Y ∖ X) ↔ z ∈ ∅.  But the statement on the left of 
the ↔ can be simplified, to z ∈ (X ∖ Y) ∧ z ∈ (Y ∖ X).  And using the definition 
of ∖, this can be further simplified to (z ∈ X ∧ ¬ (z ∈ Y)) ^ (z ∈ Y ^ ¬(z ∈ X)).

• If we define the boolean x to mean z ∈ X and the boolean y to mean z ∈ Y, we 
can rewrite the whole statement as (x ∧ ¬y) ∧ (y ∧ ¬x) ↔ 0, where we use 0 to 
mean the false proposition.  This compound proposition is a tautology.

• In the same way we can translate any set statement, because each set 
operation corresponds exactly to a boolean operation on membership 
statements.



The Setting for Propositional Proofs

• The propositional calculus lets us form compound propositions from atomic 
propositions, and then ask questions about them.

• Is a given statement P a tautology?  If we know that a premise statement P 
is true, does that guarantee that another conclusion statement C is also 
true?  Given two statements P and Q, are they equivalent?

• Verifying tautologies solves all three of these questions, because they ask 
whether P, P → C, and P ↔ Q respectively are tautologies.

• In this lecture we’ll see how to verify a tautology  with a truth table.

• Next week we’ll see how to verify that an implication or an equivalence is a 
tautology with a deductive sequence proof or an equational sequence 
proof.



How to Do a Truth Table Proof

• The idea of a truth table proof is that if we have k atomic propositions, there 
are 2k possible settings of the truth values of those propositions.  If a given 
compound proposition is true in all of those cases, it is a tautology.

• We need to evaluate the compound proposition systematically, in all the 
cases.  We begin by listing the cases, which we can do by counting in binary 
from 0 to 2k - 1, which is from 00...0 to 11...1.  (This is much less error-prone 
than trying to get all the cases in some arbitrary order.)

• The basic idea is that under each symbol of the compound proposition, we 
will have a column of  2k  0’s and 1’s to represent the values, in each case, of 
the compound proposition associated with that symbol.

• We begin with the occurrences of the variables, then calculate new columns 
in the order that operations are used to evaluate the compound proposition.



A Truth Table Example

• Let’s take the formula (x ∧ ¬ y) ∧ (y ∧ ¬ x) ↔ 0.  There are four cases 00, 01, 
10, and 11, where the first bit is the truth value of x and the second that of y. 
We write the correct column under each occurrence of a variable.  We also 
write a column of all 0’s under the 0, since this symbol always has the value 0.

x y | (x ∧ ¬ y) ∧ (y ∧ ¬ x) ↔  0
--------------------------------
0 0    0     0     0     0     0
0 1    0     1     1     0     0
1 0    1     0     0     1     0
1 1    1     1     1     1     0



Continuing the Example

• Next we fill in the columns for the ¬ operations:

• Then the two ∧ operations inside the parentheses:

x y | (x ∧ ¬ y) ∧ (y ∧ ¬ x) ↔  0
--------------------------------
0 0    0   1 0     0   1 0     0
0 1    0   0 1     1   1 0     0
1 0    1   1 0     0   0 1     0
1 1    1   0 1     1   0 1     0

x y | (x ∧ ¬ y) ∧ (y ∧ ¬ x) ↔  0
--------------------------------
0 0    0 0 1 0     0 0 1 0     0
0 1    0 0 0 1     1 1 1 0     0
1 0    1 1 1 0     0 0 0 1     0
1 1    1 0 0 1     1 0 0 1     0



Finishing the Example

• Then the last ∧ operation:

• And finally the ↔ operation.  Since this final column is all 1’s, we have shown 
that the original compound proposition is a tautology.

x y | (x ∧ ¬ y) ∧ (y ∧ ¬ x) ↔  0
--------------------------------
0 0    0 0 1 0  0  0 0 1 0     0
0 1    0 0 0 1  0  1 1 1 0     0
1 0    1 1 1 0  0  0 0 0 1     0
1 1    1 0 0 1  0  1 0 0 1     0

x y | (x ∧ ¬ y) ∧ (y ∧ ¬ x) ↔  0
--------------------------------
0 0    0 0 1 0  0  0 0 1 0  1  0
0 1    0 0 0 1  0  1 1 1 0  1  0
1 0    1 1 1 0  0  0 0 0 1  1  0
1 1    1 0 0 1  0  1 0 0 1  1  0


