CMPSCI 250: Introduction to Computation

Lecture \#3: Set Operations and Truth Table Proofs David Mix Barrington
27 January 2012

Set Operations and Truth Table Proofs

- Venn Diagrams
- Carroll Diagrams
- Set Operations
- Propositions About Sets
- The Setting For Propositional Proofs
- How to Do a Truth Table Proof
- A Truth Table Proof Example

Sets and Venn Diagrams

- Suppose we have multiple sets whose elements all come from a single type.

A Venn Diagram From cubiclebot.com

- Each set divides the type into two groups -- the elements in the set and the elements not in the set.
- Two sets give us four total groups, three sets give us eight, four sets give 16, and so forth -- k sets make 2^{k} total groups.
- A Venn diagram can represent these
 the homework, you'll draw a general Venn diagram for four sets.

Carroll Diagrams

- Lewis Carroll (author of Alice in Wonderland) was a contemporary of Venn and had his own system of diagrams.
- The top diagram represents the four possible combinations of being in the set x or y. For example, region 2 is in y but not in x.
- The bottom diagram includes a third set m, inside the central box. Region 5 is in m and x but not in y . Note the binary for 5,101 , codes these three bits: yes-m, no-y, yes-x.
- What about four sets?

Set Operations

- We have a number of binary operations on sets, that each take two sets as input and give one set as output.
- If X and Y are sets, their union $X \cup Y$ is the set of all elements in either X or Y, and their intersection $\mathrm{X} \cap \mathrm{Y}$ is the set of all elements that are in both.
- The symmetric difference $X \Delta Y$ is the set of elements in exactly one of X and Y. The relative complement $X \backslash Y$ is the elements in X, but not in Y. The complement of $X(X$ with a line over it) is the set of elements not in X.

Diagrams from wikipedia.org, "Venn Diagram"

Propositions About Sets

- Given two sets X and Y , we can form the propositions $\mathrm{X}=\mathrm{Y}$ and $\mathrm{X} \subseteq \mathrm{Y}$. We can also use the $=$ and \subseteq operators on more complicated sets formed with the set operators, for example $(X \backslash Y) \cap(Y \backslash X)=\varnothing$.
- This last statement is an example of a set identity because it is true no matter what the sets X and Y are. Since all the elements of $X \backslash Y$ are in X, and none of the elements of $Y \backslash X$ are in X, no element could be in both.
- Equality and subset statements about sets are actually compound propositions involving membership statements for the original sets. For example, $\mathrm{X}=\mathrm{Y}$ means that for any object z of the correct type, the propositions $z \in X$ and $z \in Y$ are either both true or both false: $z \in X \leftrightarrow z \in Y$.
- Similarly, $\mathrm{X} \subseteq Y$ means that for any $z, z \in X$ implies $z \in Y: z \in X \rightarrow z \in Y$.

Set Identities With Set Operators

- A set statement like $(X \backslash Y) \cap(Y \backslash X)=\varnothing$, using set operations and the equality or subset operator, can be translated into a compound proposition.
- We want to say $z=(X \backslash Y) \cap(Y \backslash X) \leftrightarrow z \in \varnothing$. But the statement on the left of the \leftrightarrow can be simplified, to $z \in(X \backslash Y) \wedge z \in(Y \backslash X)$. And using the definition of \backslash, this can be further simplified to $(z \in X \wedge \neg(Z \in Y)) \wedge(z \in Y \wedge \neg(Z \in X))$.
- If we define the boolean x to mean $z \in X$ and the boolean y to mean $z \in Y$, we can rewrite the whole statement as $(\mathrm{x} \wedge \neg \mathrm{y}) \wedge(\mathrm{y} \wedge \neg \mathrm{x}) \leftrightarrow 0$, where we use 0 to mean the false proposition. This compound proposition is a tautology.
- In the same way we can translate any set statement, because each set operation corresponds exactly to a boolean operation on membership statements.

The Setting for Propositional Proofs

- The propositional calculus lets us form compound propositions from atomic propositions, and then ask questions about them.
- Is a given statement P a tautology? If we know that a premise statement P is true, does that guarantee that another conclusion statement C is also true? Given two statements P and Q, are they equivalent?
- Verifying tautologies solves all three of these questions, because they ask whether $P, P \rightarrow C$, and $P \leftrightarrow Q$ respectively are tautologies.
- In this lecture we'll see how to verify a tautology with a truth table.
- Next week we'll see how to verify that an implication or an equivalence is a tautology with a deductive sequence proof or an equational sequence proof.

How to Do a Truth Table Proof

- The idea of a truth table proof is that if we have k atomic propositions, there are 2^{k} possible settings of the truth values of those propositions. If a given compound proposition is true in all of those cases, it is a tautology.
- We need to evaluate the compound proposition systematically, in all the cases. We begin by listing the cases, which we can do by counting in binary from 0 to $2^{\mathrm{k}}-1$, which is from $00 \ldots 0$ to $11 \ldots 1$. (This is much less error-prone than trying to get all the cases in some arbitrary order.)
- The basic idea is that under each symbol of the compound proposition, we will have a column of $2^{k} 0$'s and 1 's to represent the values, in each case, of the compound proposition associated with that symbol.
- We begin with the occurrences of the variables, then calculate new columns in the order that operations are used to evaluate the compound proposition.

A Truth Table Example

- Let's take the formula $(\mathrm{x} \wedge \neg \mathrm{y}) \wedge(\mathrm{y} \wedge \neg \mathrm{x}) \leftrightarrow 0$. There are four cases 00,01 ,

10 , and 11 , where the first bit is the truth value of x and the second that of y. We write the correct column under each occurrence of a variable. We also write a column of all 0 's under the 0 , since this symbol always has the value 0 .

Continuing the Example

- Next we fill in the columns for the \neg operations:

0	0	0	1	0	0	1	0	0
0	1	0	0	1	1	1	0	0
1	0	1	1	0	0	0	1	0
1	1	1	0	1	1	0	1	0

- Then the two \wedge operations inside the parentheses:
$\mathrm{x} y \mid(\mathrm{x} \wedge \neg \mathrm{y}) \wedge(\mathrm{y} \wedge \neg \mathrm{x}) \leftrightarrow \quad 0$
$\begin{array}{lllllllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0\end{array}$
$\begin{array}{lllllllllll}0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0\end{array}$
$\begin{array}{llllllllllll}1 & 0 & 1 & 1 & 1 & 0\end{array} \quad \begin{array}{llllll}0 & 0 & 0 & 1\end{array} \quad 0$
$\begin{array}{lllllllllll}1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0\end{array}$

Finishing the Example

- Then the last \wedge operation:

| x | y | $(\mathrm{x}$ | \wedge | \neg | $\mathrm{y})$ | \wedge | $(\mathrm{y}$ | \wedge | \neg | $\mathrm{x})$ | \leftrightarrow | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| - | - | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | |
| 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | |
| 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | |
| 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | |

- And finally the \leftrightarrow operation. Since this final column is all 1 's, we have shown that the original compound proposition is a tautology.

$\begin{array}{lllllllllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0\end{array}$
$\begin{array}{lllllllllllll}0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0\end{array}$
$\begin{array}{lllllllllllll}1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0\end{array}$
$\begin{array}{lllllllllllll}1 & 1 & & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1\end{array} 0$

