CMPSCI 250: Introduction to Computation

Lecture #3: Set Operations and Truth Table Proofs David Mix Barrington 27 January 2012

Set Operations and Truth Table Proofs

- Venn Diagrams
- Carroll Diagrams
- Set Operations
- Propositions About Sets
- The Setting For Propositional Proofs
- How to Do a Truth Table Proof
- A Truth Table Proof Example

Sets and Venn Diagrams

- Suppose we have multiple sets whose elements all come from a single type.
- Each set divides the type into two groups -- the elements in the set and the elements not in the set.
- Two sets give us four total groups, three sets give us eight, four sets give 16, and so forth -- k sets make 2^k total groups.
- A **Venn diagram** can represent these groups, as with the three sets at left. On the homework, you'll draw a general Venn diagram for four sets.

Carroll Diagrams

- Lewis Carroll (author of *Alice in Wonderland*) was a contemporary of Venn and had his own system of diagrams.
- The top diagram represents the four possible combinations of being in the set x or y. For example, region 2 is in y but not in x.
- The bottom diagram includes a third set m, inside the central box. Region 5 is in m and x but not in y. Note the binary for 5, 101, codes these three bits: yes-m, no-y, yes-x.
- What about four sets?

Set Operations

Propositions About Sets

- Given two sets X and Y, we can form the propositions X = Y and X ⊆ Y. We can also use the = and ⊆ operators on more complicated sets formed with the set operators, for example (X \ Y) ∩ (Y \ X) = Ø.
- This last statement is an example of a **set identity** because it is true no matter what the sets X and Y are. Since all the elements of X \ Y are in X, and none of the elements of Y \ X are in X, no element could be in both.
- Equality and subset statements about sets are actually compound propositions involving membership statements for the original sets. For example, X = Y means that for any object z of the correct type, the propositions z ∈ X and z ∈ Y are either both true or both false: z ∈ X ↔ z ∈ Y.

• Similarly, $X \subseteq Y$ means that for any $z, z \in X$ implies $z \in Y$: $z \in X \rightarrow z \in Y$.

Set Identities With Set Operators

- A set statement like (X \ Y) ∩ (Y \ X) = Ø, using set operations and the equality or subset operator, can be translated into a compound proposition.
- We want to say z = (X \ Y) ∩ (Y \ X) ↔ z ∈ Ø. But the statement on the left of the ↔ can be simplified, to z ∈ (X \ Y) ∧ z ∈ (Y \ X). And using the definition of \, this can be further simplified to (z ∈ X ∧ ¬ (z ∈ Y)) ^ (z ∈ Y ^ ¬(z ∈ X)).
- If we define the boolean x to mean z ∈ X and the boolean y to mean z ∈ Y, we can rewrite the whole statement as (x ∧ ¬y) ∧ (y ∧ ¬x) ↔ 0, where we use 0 to mean the false proposition. This compound proposition is a tautology.
- In the same way we can translate any set statement, because each set operation corresponds exactly to a boolean operation on membership statements.

The Setting for Propositional Proofs

- The propositional calculus lets us form compound propositions from atomic propositions, and then ask questions about them.
- Is a given statement P a **tautology**? If we know that a **premise** statement P is true, does that guarantee that another **conclusion** statement C is also true? Given two statements P and Q, are they **equivalent**?
- Verifying tautologies solves all three of these questions, because they ask whether P, P → C, and P ↔ Q respectively are tautologies.
- In this lecture we'll see how to verify a tautology with a **truth table**.
- Next week we'll see how to verify that an implication or an equivalence is a tautology with a **deductive sequence proof** or an **equational sequence proof**.

How to Do a Truth Table Proof

- The idea of a truth table proof is that if we have k atomic propositions, there are 2^k possible settings of the truth values of those propositions. If a given compound proposition is true in all of those cases, it is a tautology.
- We need to evaluate the compound proposition systematically, in all the cases. We begin by listing the cases, which we can do by **counting in binary** from 0 to 2^k 1, which is from 00...0 to 11...1. (This is much less error-prone than trying to get all the cases in some arbitrary order.)
- The basic idea is that *under* each symbol of the compound proposition, we will have a column of 2^k 0's and 1's to represent the values, in each case, of the compound proposition associated with that symbol.
- We begin with the occurrences of the variables, then calculate new columns in the order that operations are used to evaluate the compound proposition.

A Truth Table Example

 Let's tal 	ke the f	ormula	(x ∧ ¬ y)) ^ (y ^ ·	¬ x) ↔ 0.	There are four cases 00, 01,
10, and We write write a c	11, wh e the co column	ere the prrect co of all 0'	first bit olumn u s under	is the tr nder ea the 0, s	uth value ch occui since this	e of x and the second that of y. rrence of a variable. We also s symbol always has the value 0.
	x y	(x ^	¬ y) ∧	(у ^	¬ x) ↔	0
	0 0	0	0	0	0	0
	0 1	0	1	1	0	0
	1 0	1	0	0	1	0
	1 1	1	1	1	1	0

Continuing the Example

• Next we fill in the columns for the ¬ operations:

()	0		0		1	0		0		1	0		0
()	1		0		0	1		1		1	0		0
1		0		1		1	0		0		0	1		0
1	L	1		1		0	1		1		0	1		0
line	t	W) ^	op	era	atic	ons	ins	ide	th	e p	are	enthe	eses
x	t	wo y		op (x	^	atic –	y)	ins ^	ide (y	th ^	e p 「	x)	enthe ↔	ese: 0
x - 0	t	wс У 	> ^ 	op (x 	^ ^ 0	atic 1	ons y) 	ins ^	ide (y 	th ^ 0	e p 1	x)	enthe ↔	ese: 0 0
x - 0 0	t	wo y 0 1) ^ 	op (x 0 0	oera ^ 0 0 0	atic 1 0	ons y) 0 1	ins ^	ide (y 0 1	th ^ 0 1	e p 1 1	x) x) 0	enthe ↔	ese: 0 0 0
x - 0 1	t	wo y 0 1 0	> ^ 	op (x 0 1	era 0 0 0 1	atic 1 0 1	y) 9 0 1 0	ins ^	ide (y 0 1 0	th ^ 0 1 0	e p 1 1 0	x) (0) (1)	enthe ↔	0 0 0 0 0

Finishing the Example

• Then the last \land operation:

ху	(x /	\ ¬	y)	۸	(у	۸	٦	x)	↔ 0	
0 0	0 0) 1	0	0	0	0	1	0	0	
0 1	0 0	0 (1	0	1	1	1	0	0	
1 0	1 1	1	0	0	0	0	0	1	0	
1 1	1 (0 (1	0	1	0	0	1	0	

• And finally the \leftrightarrow operation. Since this final column is all 1's, we have shown

that the original compound proposition is a tautology.

 $x y \mid (x \land \neg y) \land (y \land \neg x) \leftrightarrow 0$

0	0	0	0	1	0	0	0	0	1	0	1	0
0	1	0	0	0	1	0	1	1	1	0	1	0
1	0	1	1	1	0	0	0	0	0	1	1	0
1	1	1	0	0	1	0	1	0	0	1	1	0