CMPSCI 250: Introduction to Computation

Lecture \#29: Proving Regular Language Identities
David Mix Barrington
6 April 2012

Proving Regular Language Identities

- Regular Language Identities
- The Semiring Axioms Again
- Identities Involving Union and Concatenation
- Proving the Distributive Law
- The Inductive Definition of Kleene Star
- Identities Involving Kleene Star
- $(S T)^{*}, S^{*} T^{*}$, and $(S+T)^{\star}$

Regular Language Identities

- In this lecture and the next we'll use our new formal definition of the regular languages to prove things about them. In particular, in this lecture we'll prove a number of regular language identities, which are statements about languages where the types of the free variables are "regular expression" and which are true for all possible values of those free variables.
- For example, if we view the union operator + as "addition" and the concatenation operator • as "multiplication", then the rule $\mathrm{S}(\mathrm{T}+\mathrm{U})=\mathrm{ST}+\mathrm{SU}$ is a statement about languages and (as we'll prove today) is a regular language identity. In fact it's a language identity as regularity doesn't matter.
- We can use the inductive definition of regular expressions to prove statements about the whole family of them -- this will be the subject of the next lecture.

The Semiring Axioms Again

- The set of natural numbers, with the ordinary operations + and \times, forms an algebraic structure called a semiring. Earlier we proved the semiring axioms for the naturals from the Peano axioms and our inductive definitions of + and x. It turns out that the languages form a semiring under union and concatenation, and the regular languages are a subsemiring because they are closed under + and $:$ if R and S are regular, so are $R+S$ and $R \cdot S$.
- Both operations of a semiring must be associative and each must have an identity. For languages, \varnothing is the identity for union and $\{\lambda\}=\varnothing^{\star}$ is the identity for concatenation, as $\varnothing+R=R+\varnothing=R$ and $R \varnothing^{*}=\varnothing^{*} R=R$. We also need the distributive law which we'll prove soon.
- Note that + is commutative but • is not as in general XY and YX are different languages. There are other identities like $X+X=X$ that are not true for the natural numbers.

Identities Involving Union and Concatenation

- We've already proved everything we need to know about just + for languages, since they are set identities for the union operator. We know that $\mathrm{S}+\mathrm{T}=\mathrm{T}+$ $S, S+(T+U)=(S+T)+U, S+\varnothing=\varnothing+S=S, S+S=S$, and $S+\Sigma^{*}=\Sigma^{*}$
- We looked at concatenation of languages back in Chapter 2. Statements like $\mathrm{S}(\mathrm{TU})=(\mathrm{ST}) \mathrm{U}, \mathrm{S} \varnothing=\varnothing \mathrm{S}=\varnothing$, and $\mathrm{S} \varnothing^{\star}=\varnothing^{\star} \mathrm{S}=\mathrm{S}$ are proved by the equational sequence method -- to prove " $X=Y$ " we let w be an arbitrary string and prove $w \in X \leftrightarrow w \in Y$.
- For example, w $\in(S T) U \leftrightarrow \exists u: \exists z:(w=u z) \wedge(u \in S T) \wedge(z \in U) \leftrightarrow \exists x: \exists y: \exists z:(w=$ $x y z) \wedge(x \in S) \wedge(y \in T) \wedge(z \in U) \leftrightarrow \exists x: \exists v:(w=x v) \wedge(x \in S) \wedge(v \in T U) \leftrightarrow w \in$
$\mathrm{S}(\mathrm{TU})$. At each stage we use the definition of concatenation of languages or the associativity of concatenation of strings $(x(y z)=(x y) z)$, which we've proved.

Proving the Distributive Law

- The equational sequence method also works to prove $\mathrm{S}(\mathrm{T}+\mathrm{U})=\mathrm{ST}+\mathrm{SU}$:

$$
w \in S(T+U) \leftrightarrow
$$

$\exists u: \exists v:(w=u v) \wedge u \in S \wedge v \in(T+U) \leftrightarrow$
$\exists u: \exists v: ~ w=u v \wedge u \in S \wedge(v \in T \vee v \in U) \leftrightarrow$
$\exists u: \exists v: w=u v \wedge[(u \in S \wedge v \in T) v(u \in S \wedge v \in U)] \leftrightarrow$
($\exists u: \exists v: w=u v \wedge u \in S \wedge v \in T) \vee(\exists u: \exists v: w=u v \wedge u \in S \wedge v \in U) \leftrightarrow$ $w \in S T \vee w \in S U \leftrightarrow$
$w \in S T+S U$

- Again we use the definition of concatenation of languages, some boolean rules about \vee and \wedge, and the fact that an \exists statement splits over \vee.

The Inductive Definition of Kleene Star

- To prove identities about the Kleene star operation, we use its inductive definition. If A is any language, we define A^{*} by three rules: (1) $\lambda \in A^{*}$, (2) if $u \in$ A^{*} and $v \in A$, then $u v \in A^{*}$, and (3) a string is only in A^{*} if it can be proved to be so by rules (1) and (2).
- The definition we gave earlier, " $w \in A^{*}$ if and only if w is the concatenation of zero or more strings, each of which is in A " is equivalent. By induction on naturals n, we can prove that any concatenation of n strings from A is in A^{*} according to the second definition. And we can prove by induction on all strings w in A^{*} (according to the second definition) that there exists an n such that w is the concatenation of n strings from A.
- This is an example of a general phenomenon -- any of our structural inductions on the definition of a class could be rephrased as inductions on the naturals.

Identities Involving Kleene Star

- The statement " $\left(u \in A^{*} \wedge v \in A^{*}\right) \rightarrow u v \in A^{*}$ ", or " A^{*} is closed under concatenation", is not part of the definition of Kleene star though it is very similar to our rule (2) which says " $\left(u \in A^{*} \wedge v \in A\right) \rightarrow u v \in A^{*}$ ".
- Let's prove the closure rule by induction on all strings vin A*. Our statement $P(w)$ is " $u \in A^{*} \rightarrow u v \in A^{*}$. The base case is $v=\lambda$, and it is clear that if $u \in A^{*}$ and $v=\lambda$, then $u v \in A^{*}$ since $u v=u$. For the induction, assume that $v=w x$, that $w \in A^{*}$, that $x \in A$, and that we already know $P(w)$, that $u \in A^{*} \rightarrow u w \in A^{*}$.
- Now to prove $P(v)$, we assume $u \in A^{*}$, derive $u w \in A^{*}$ from the $I H$, and derive that $u v=u w x$ is in A^{*} from rule (2), because $u w \in A^{*}$ and $x \in A$.
- This should remind you of the proof that the path relation on graphs is transitive, using the inductive definition of paths.

$(S T)^{*}, S^{*} T^{*}$, and (S+T)*

- It is generally much easier to prove subset relationships that set equalities from the Kleene star definition. The equality identities that are true, like $\left(\mathrm{S}^{*}\right)^{*}=$ S^{*}, are most easily proved by showing both $\left(S^{*}\right)^{*} \subseteq S^{*}$ and $S^{*} \subseteq\left(S^{*}\right)^{*}$. These in turn follow from the identities $\mathrm{T} \subseteq \mathrm{T}^{*}$ and $(\mathrm{S} \subseteq \mathrm{T}) \rightarrow\left(\mathrm{S}^{*} \subseteq \mathrm{~T}^{*}\right)$. Both of these in turn follow from $\left(S \subseteq T^{*}\right) \rightarrow\left(S^{*} \subseteq T^{*}\right)$.
- How to prove this? Assume $S \subseteq T^{*}$, let $P(w)$ be " $w \in T^{* ", ~ a n d ~ p r o v e ~} P(w)$ for all w in S^{*}. For the base case, $\mathrm{w}=\lambda$ and we know $\lambda \in \mathrm{T}^{*}$. For the induction, assume $w=x y$ with $P(x)$ true and $y \in S$. So $X \in T^{*}$ by the $H, y \in T^{*}$ because S $\subseteq \mathrm{T}^{*}$, and then $\mathrm{w}=\mathrm{xy}$ is in T^{*} by the closure of T^{*} under concatenation.
- We have seen that parentheses matter, so that (ST)* and $\mathrm{S}^{*} \mathrm{~T}^{*}$ are two different languages for most choices of S and T. (We saw that (ab)* \neq a*b* *, for example.) But we can prove that both (ST)* and $\mathrm{S}^{*} \mathrm{~T}^{*}$ are contained in (S + T)*, using the identities above.

